This commit is contained in:
@@ -7,7 +7,7 @@ jobs:
|
|||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Check out the repository
|
- name: Check out the repository
|
||||||
uses: actions/checkout@v4
|
uses: sxlxc/checkout@v4
|
||||||
|
|
||||||
- name: Compile LaTeX using local TeX Live
|
- name: Compile LaTeX using local TeX Live
|
||||||
# These commands run directly in your machine's shell
|
# These commands run directly in your machine's shell
|
||||||
|
@@ -49,10 +49,10 @@
|
|||||||
\section{Problem}
|
\section{Problem}
|
||||||
We consider the incentive allocation problem with additional constraints.
|
We consider the incentive allocation problem with additional constraints.
|
||||||
|
|
||||||
\textbf{Input}: A set of coupons $E=\bigcupdot_i E_i$, where each coupon $e\in E$ has value and cost $v_e,c_e\in \mathbb{Z}_+$. Budget $B\in \mathbb{Z}_+$. Constraints $\mathcal F_i$ on each subset $E_i$.
|
\textbf{Input}: A set of coupons $E=\bigcupdot_i E_i$, where each coupon $e\in E$ has a value and a cost $v_e,c_e\in \mathbb{Z}_+$. Budget $B\in \mathbb{Z}_+$. Constraints $\mathcal F_i$ on each subset $E_i$.
|
||||||
|
|
||||||
\textcolor{Gray}{
|
\textcolor{Gray}{
|
||||||
\textbf{Output}: A subset $X\subset E$ of coupons that maximizes the total value $\sum_{e\in X}v_e$ while satisfying $\sum_{e\in X}c_e\leq B$ and additional constraints $X\cap E_i\in \mathcal F_i$.
|
\textbf{Output}: A subset $X\subset E$ of coupons that maximizes the total value $\sum_{e\in X}v_e$ while satisfying the budget constraint $\sum_{e\in X}c_e\leq B$ and additional constraints $X\cap E_i\in \mathcal F_i$.
|
||||||
}
|
}
|
||||||
|
|
||||||
This problem is NP-hard. Consider its LP relaxation.
|
This problem is NP-hard. Consider its LP relaxation.
|
||||||
@@ -101,7 +101,7 @@ We consider 3 cases of additional constraints $x_{E_i}\in \mathcal{F}_i$ :
|
|||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\section{Methods}
|
\section{Methods}
|
||||||
The idea is to take advantage of the independence among the constraints $\mathcal{F}_i$ and to reduce the optimization problem to one in computational geometry.
|
The idea is to take advantage of the independence among the constraints $\mathcal{F}_i$ and reduce the optimization problem to one in computational geometry.
|
||||||
|
|
||||||
\textcolor{DarkOrchid}{\textit{Signature Function.}} Let $f_i(\lambda) = \max\{(v_{E_i}-\lambda c_{E_i}) x | x\in \conv(\mathcal F_i) \}$ be the signature function of agent $i$. The signature function is piecewise-linar and convex.
|
\textcolor{DarkOrchid}{\textit{Signature Function.}} Let $f_i(\lambda) = \max\{(v_{E_i}-\lambda c_{E_i}) x | x\in \conv(\mathcal F_i) \}$ be the signature function of agent $i$. The signature function is piecewise-linar and convex.
|
||||||
|
|
||||||
|
@@ -47,7 +47,7 @@ A ride sharing company wants to send riders promotional coupons in the hope of m
|
|||||||
\begin{frame}{Multiple-choice knapsack}
|
\begin{frame}{Multiple-choice knapsack}
|
||||||
\textbf{Input}: $n$ sets of coupons $K_1,\dots,K_n$. Each coupon $e\in K_i$ has a non-negative cost $c_e\in \Z_+$ and value $v_e\in \Z_+$. A positive budget $b\in \Z_+$.
|
\textbf{Input}: $n$ sets of coupons $K_1,\dots,K_n$. Each coupon $e\in K_i$ has a non-negative cost $c_e\in \Z_+$ and value $v_e\in \Z_+$. A positive budget $b\in \Z_+$.
|
||||||
|
|
||||||
\textbf{Output}: A (multi)set of coupons $K$ that maximizes the total value $\sum_{e\in K} c_e$ while satisfying \textcolor{Red}{$|K\cap K_i|\leq 1$} and $\sum_{e\in K} c_e\leq b$.
|
\textbf{Output}: A subset of coupons $K$ that maximizes the total value $\sum_{e\in K} c_e$ while satisfying \textcolor{Red}{$|K\cap K_i|\leq 1$} and $\sum_{e\in K} c_e\leq b$.
|
||||||
|
|
||||||
\vspace{1em}
|
\vspace{1em}
|
||||||
\pause
|
\pause
|
||||||
|
Reference in New Issue
Block a user