testing my 2 factor conjecture
This commit is contained in:
		@@ -1,41 +1,67 @@
 | 
			
		||||
# cogirth-packing gap of projections of graphic matroids
 | 
			
		||||
# see if gap(projection) <= 2 * gap(graph)
 | 
			
		||||
 | 
			
		||||
from sage.all import *
 | 
			
		||||
from sage.matroids.all import *
 | 
			
		||||
from sage.graphs.all import *
 | 
			
		||||
import gurobipy as gp
 | 
			
		||||
from gurobipy import GRB
 | 
			
		||||
from fractions import Fraction
 | 
			
		||||
 | 
			
		||||
env = gp.Env(empty=True)
 | 
			
		||||
env.setParam("OutputFlag",0)
 | 
			
		||||
env.start()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def cogirthip(bases, integral=true):
 | 
			
		||||
def base_hittingset_with_callback(M, integral=true):
 | 
			
		||||
    # model
 | 
			
		||||
    model = gp.Model("mip1",env=env)
 | 
			
		||||
    # model.Params.LogToConsole = 0
 | 
			
		||||
    groundset=frozenset()
 | 
			
		||||
    for B in bases: groundset=groundset|frozenset(B)
 | 
			
		||||
    groundset = M.groundset()
 | 
			
		||||
    x = dict()
 | 
			
		||||
    if integral:
 | 
			
		||||
        for e in groundset: x[e]=model.addVar(vtype=GRB.BINARY)
 | 
			
		||||
    else:
 | 
			
		||||
        for e in groundset: x[e]=model.addVar(vtype=GRB.CONTINUOUS,lb=0)
 | 
			
		||||
    model.setObjective(gp.quicksum([x[e] for e in groundset]), GRB.MINIMIZE)
 | 
			
		||||
    for B in bases:
 | 
			
		||||
        for e in groundset: x[e]=model.addVar(vtype=GRB.CONTINUOUS,lb=0,ub=1)
 | 
			
		||||
    # there is no lazy constraint for LP...
 | 
			
		||||
    for B in M.bases():
 | 
			
		||||
        model.addConstr(gp.quicksum([x[e] for e in B])>=1)
 | 
			
		||||
    model.optimize()
 | 
			
		||||
    model.setObjective(gp.quicksum([x[e] for e in groundset]), GRB.MINIMIZE)
 | 
			
		||||
    # callback
 | 
			
		||||
    def callback_func(model, where):
 | 
			
		||||
        if integral and where == GRB.Callback.MIPSOL:
 | 
			
		||||
            sol_values = {key: model.cbGetSolution(var) 
 | 
			
		||||
                          for key, var in x.items()}
 | 
			
		||||
            # find min weight base in the matroid
 | 
			
		||||
            base = frozenset()
 | 
			
		||||
            minweight=0
 | 
			
		||||
            for e in sorted(groundset, key=lambda ee: sol_values[ee]):
 | 
			
		||||
                if M.is_independent(base.union([e])):
 | 
			
		||||
                    base=base.union([e])
 | 
			
		||||
                    minweight=minweight+sol_values[e]
 | 
			
		||||
            if minweight < 1:
 | 
			
		||||
                model.cbLazy(gp.quicksum([x[e] for e in base])>=1)
 | 
			
		||||
    # solve
 | 
			
		||||
    if integral:
 | 
			
		||||
        model.Params.Heuristics = 0
 | 
			
		||||
        model.Params.LazyConstraints = 1
 | 
			
		||||
        model.optimize(callback_func)
 | 
			
		||||
    else:
 | 
			
		||||
        model.optimize()
 | 
			
		||||
    return model.ObjVal
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cnt=0   # actual number of instances tested
 | 
			
		||||
maxgap=0
 | 
			
		||||
maxfactor=0
 | 
			
		||||
f = lambda g: g.is_connected()
 | 
			
		||||
for N in range(4,10):
 | 
			
		||||
    for g in filter(f, graphs(N)):
 | 
			
		||||
        MG=Matroid(g)
 | 
			
		||||
        mincut=base_hittingset_with_callback(MG)
 | 
			
		||||
        treepacking=base_hittingset_with_callback(MG,integral=false)
 | 
			
		||||
        g_gap=mincut/treepacking
 | 
			
		||||
        A=g.incidence_matrix()
 | 
			
		||||
        n,m = A.dimensions()
 | 
			
		||||
        # enumerate all vectors in F_2^n with even number of 1s
 | 
			
		||||
        m_gap=0
 | 
			
		||||
        V = VectorSpace(GF(2), N)
 | 
			
		||||
        for v in filter(lambda v: v.hamming_weight() % 2 == 0 and v!=0, V):
 | 
			
		||||
            cnt=cnt+1
 | 
			
		||||
@@ -44,17 +70,27 @@ for N in range(4,10):
 | 
			
		||||
            # print(A_t)
 | 
			
		||||
            M=Matroid(matrix=A_t,field=GF(2))/m     #contract the last element
 | 
			
		||||
            # print(M)
 | 
			
		||||
            bases=M.bases()
 | 
			
		||||
            strength=cogirthip(bases,integral=false)
 | 
			
		||||
            cogirth =cogirthip(bases,integral=true)
 | 
			
		||||
            cogirth = base_hittingset_with_callback(M,integral=true)
 | 
			
		||||
            strength = base_hittingset_with_callback(M,integral=false)
 | 
			
		||||
            gap = cogirth/strength
 | 
			
		||||
            m_gap=max(m_gap,gap)
 | 
			
		||||
            # maxgap=max(gap,maxgap)
 | 
			
		||||
            if gap > maxgap:
 | 
			
		||||
                maxgap = gap
 | 
			
		||||
                print(f"find a large gap: {gap}")
 | 
			
		||||
                with open("projection.out", "a") as file:
 | 
			
		||||
                    file.write("##################################\n"
 | 
			
		||||
                               +str(gap)+"\n"+str(A_t)
 | 
			
		||||
                               +"\n##################################\n")
 | 
			
		||||
            if cnt%100==0:
 | 
			
		||||
                print(f"#{cnt}, n={n}, max gap = {maxgap}")
 | 
			
		||||
            # if gap > maxgap:
 | 
			
		||||
            #     maxgap = gap
 | 
			
		||||
            #     print(f"find a large gap: {gap}")
 | 
			
		||||
            #     with open("projection.out", "a") as file:
 | 
			
		||||
            #         file.write("##################################\n"
 | 
			
		||||
            #                    +str(gap)+"\n"+str(A_t)
 | 
			
		||||
            #                    +"\n##################################\n")
 | 
			
		||||
        factor=m_gap/g_gap
 | 
			
		||||
        fr = lambda xx:  str(Fraction(xx).limit_denominator(m))
 | 
			
		||||
        maxfactor=max(maxfactor,factor)
 | 
			
		||||
        print(f"n={n:<2}, m={m:<4}    graph gap = {fr(g_gap):8}   projection gap = {fr(m_gap):8}  factor={fr(factor):8}   max={maxfactor}")
 | 
			
		||||
        if factor >= 2:
 | 
			
		||||
            with open("projection.out", "a") as file:
 | 
			
		||||
                file.write(f"n={n:<2}, m={m:<4}    graph gap = {fr(g_gap):8}   projection gap = {fr(m_gap):8}  factor={fr(factor):8}   max={maxfactor}\n"
 | 
			
		||||
                            +str(A_t)+"\n")
 | 
			
		||||
        if factor > 2:
 | 
			
		||||
            print("conjecture is wrong")
 | 
			
		||||
            print(str(A_t))
 | 
			
		||||
            exit(1)
 | 
			
		||||
		Reference in New Issue
	
	Block a user