
Connectivity Interdiction Notes

1 “Cut-free” Proof
Problem 1 (b-free knapsack) Consider a set of elements E with weights w : E → Z+ and cost
c : E → Z+ and a budget b ∈ Z+. Given a feasible set F ⊆ 2E, find minX∈F,F⊆E w(X \ F) such that
c(F)≤ b.

Note that F is usually not explicitly given.

Problem 2 (Normalized knapsack) Given the same input as Problem 1, find min
X∈F,F⊆E

w(X\F)
B−c(F) such

that c(F)≤ b.

In [5] the normalized min-cut problem use B = b+ 1. Here we use any integer B > b and see how
their method works.

Let τ be the optimum of Problem 2. Define a new weight wτ : E→ R,

wτ(e) =

¨

w(e) if w(e)< τ · c(e) (light elem)

τ · c(e) otherwise (heavy elem)

Lemma 1.1 Let (X N , F N ) be the optimal solution to Problem 2. Every element in F N is heavy.

The proof is the same as [5, Lemma 1].
The following two lemmas show (a general version of) that the optimal cut CN to normalized

min-cut is exactly the minimum cut under weights wτ.

Lemma 1.2 For any X ∈ F, wτ(X )≥ τB.

Lemma 1.3 X N ∈ argmin
X∈F

wτ(X ).

Proof:

wτ(X
N )≤ w(X N \ F N ) +wτ(F

N )
= τ · (B − c(F N )) +τ · c(F N)
= τB

Thus by Lemma 1.2, X N gets the minimum. □

Lemma 1.4 Let (X ∗, F ∗) be the optimal solution to Problem 1. X ∗ is either an α-approximate solution
to minX∈F wτ(X ) for some α > 1, or w(X ∗ \ F ∗)≥ τ(αB − b).

Then following arguments in [5, Corollary 1], assume that X ∗ is not an α-approximate solution
to minX∈F wτ(X ) for some α > 1. We have

w(CN \ F N )
w(C∗ \ F ∗)

≤
τ(B − c(F N ))
τ(αB − b)

≤
B

αB − b
,
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where the second inequality uses Lemma 1.4. One can see that if α > 2, w(CN\F N )
w(C∗\F∗) ≤

B
αB−b < 1

which implies (C∗, F ∗) is not optimal. Thus for α > 2, X ∗ must be a 2-approximate solution to
minX∈F wτ(X ).

Finally we get a general version of [5, Theorem 4]:

Theorem 1.5 Let X min be the optimal solution to minX∈F wτ(X ). The optimal set X ∗ in Problem 1 is
a 2-approximation to X min.

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time algorithm for finding all 2-approximations to minX∈F wτ(X ).

FPTAS for Problem 2 in [5] (The name “FPTAS” here is not precise since we do not have a
approximation scheme but an enumeration algorithm. But I will use this term anyway.) In their
settings, F is the collection of all cuts in some graph. Let OPTN be the optimum of Problem 2. We can
assume that there is no X ∈ F s.t. c(X )≤ b since this is polynomially detectable (through min-cut
on c(·)) and the optimum is 0. Thus we have 1

b+1 ≤ OPTN ≤ |E| ·maxe w(e). Then we enumerate
(1+ϵ)i

b+1 where i ∈
�

0,1, . . . ,
�

log1+ϵ(|E|wmax(b+ 1))
�	

. There is a feasible i s.t. (1 − ϵ)OPTN ≤
(1+ϵ)i

b+1 ≤ OPTN since (1+ϵ)i

b+1 ≤ OPTN ≤ (1+ϵ)i+1

b+1 holds for some i.
Note that this enumeration scheme also holds for arbitrary F if we have a non-zero lowerbound

on OPTN .

Conjecture 1.6 Let (C , F) be the optimal solution to connectivity interdiction. The optimum cut C
can be computed in polynomial time.

Note that there is a FPTAS algorithm for finding C in [5].

2 Connections
For unit weight and cost, connectivity interdiction with budget b = k− 1 is the same problem as
finding the minimum weighted edge set whose removal breaks k-edge connectivity.

Problem 2 may come from an intermediate problem of MWU methods for positive covering
LPs.

Can we get an FPTAS using LP methods?

max z

s.t.
∑

e

yec(e)≤ B (budget for F)

∑

e∈T

xe ≥ 1 ∀T (x is a cut)

∑

e

min(0, xe − ye)w(e)≥ z

ye, xe ∈ {0, 1} ∀e

we can assume that ye ≤ xe.

min
∑

e

(xe − ye)w(e)

s.t.
∑

e∈T

xe ≥ 1 ∀T (x is a cut)

∑

e

yec(e)≤ B (budget for F)

xe ≥ ye ∀e (F ⊆ C)
ye, xe ∈ {0, 1} ∀e
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Now this LP looks similar to the normalized min-cut problem.
A further reformulation (x ← x − y) gives us the following integer program,

min
∑

e

xew(e)

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T (x + y is a cut)

∑

e

yec(e)≤ b (budget for F)

ye, xe ∈ {0, 1} ∀e

(1)

Note that now this is almost a positive covering LP. Let L(λ) = min{w(C \ F) − λ(b −
c(F))|∀cut C ∀F ⊆ C} and consider the Lagrangian dual,

max
λ≥0

L(λ) =max
λ≥0

min {w(C \ F)−λ(b− c(F))|∀cut C ∀F ⊆ C} .

We have shown that the budget B in normalized min-cut does not really matter as long as B > b.
Note that L(λ) and the normalized min-cut look similar to the principal sequence of partitions of
a graph and the graph strength problem.

2.1 graph strength
For a graph G = (V, E) with edge capacity c : V → Z+, the strength σ(G) is defined as σ(G) =
minΠ

c(δ(Π))
|Π|−1 , where Π is any partition of V , |Π| is the number of parts in the partition and δ(Π) is

the set of edges between parts. Note that an alternative formulation of strength (using graphic
matroid rank function) is σ(G) =minF⊆E

c(E−F)
r(E)−r(F) , which in general is the fractional optimum of

matroid base packing.
The principal sequence of partitions of G is a pwl concave curve L(λ) =minΠ c(δ(Π))−λ|Π|.

(alternatively, L(λ) =minF∈E c(E \ F)−λ(r(E)− r(F) + 1)) Cunningham used principal partition
to computed graph strength [4]. There is a list of good properties mentioned in [2, Section
6](implicated stated in [4]).

1. We can assume G is connected and deal with the smallest strength component. One can see
this by fractional base packing on the direct sum of matroids. Note that on disconnected
graphs we should use the edge set definition instead of partitions.

2. L(λ) is piecewise linear concave since it is the lower envelope of some line arrangement.

3. For each line segment on L(λ) there is a corresponding partition Π. If λ∗ is a breakpoint on
L(λ), then there are two optimal solution (say partitions P1 and P2, assume |P1| ≤ |P2|) to
minΠ c(δ(Π))−λ∗|Π|. Then P2 is a refinement of P1.

Proof (sketch): Suppose that P2 is not a refinement of P1. We claim that the meet of P1

and P2 achieves a objective value at least no larger than P1 or P2 does. The correspondence
between graphic matroid rank function and partitions of V gives us a reformulation L(λ∗) =
minF⊆E c(E − F) − λ∗(r(E) − r(F) + 1). Here F is the set of edges in each part of Π. Let
g(F) = c(E− F)+λ∗r(F)−λ∗n. Then the claim is equivalent to the fact that for two optimal
solutions F1, F2 to L(λ∗), g(F1 ∩ F2)≤ g(F1) = g(F2)≤ g(F1 ∪ F2), which can be seen by the
submodularity of g and the optimality of F1, F2. □

The number of breakpoints on L(λ) is at most n− 1.
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4. Let λ∗ be a breakpoint on L(λ) induced by edge set F . The next breakpoint is induced by
the edge set F ′ ⊆ F and F ′ is the solution to strength problem on the smallest strength
component of F . λ∗ is the strength of the smallest strength component in F . These claims
can be seen by the following arguments. From the previous bullet we have min∆F c(E − F +
∆F)−λ∗(r(E)− r(F −∆F) + 1) = L(λ∗). Consider the largest λ∗ which allows ∆F = ; to
be an optimal solution. Such λ∗ would be the next breakpoint. For any ∆F , c(E− F +∆F)−
λ∗(r(E)− r(F −∆F) + 1)≥ c(E − F)−λ∗(r(E)− r(F) + 1). Thus we have λ∗ ≤ c(∆F)

r(F)−r(F−∆F) .

5. Consider λ ∈ [0,ϵ] for some small enough ϵ. The Lagrangian dual minF c(E \ F)−λ(r(E)−
r(F) + 1) gets the optimum at F = E. That is c(E \ F ′)− λ(r(E)− r(F ′) + 1) > −λ for all
F ′ ⊊ E. We are interested in the upperbound ϵ of λ such that the optimal F is a proper
subset of E when λ > ϵ. Therefore, the upperbound is ϵ =minF⊊E c(E\F)

r(E)−r(F) , which is exactly
the strength.

2.2 principal sequence of partitions for cut interdiction
Now we focus on L(λ) =min{w(C \ F)−λ(b− c(F))|∀cut C ∀F ⊆ C}. We can still assume that G
is connected and see that L(λ) is pwl concave (1 and 2 still hold). Let λ∗ be a breakpoint on L.
Suppose that there are two optimal solutions (C1, F1) and (C2, F2) at λ∗. For fixed C (C1 = C2), the
same argument for principal partition still works. However, the difficult part is that C might not
be the same. So it’s unlikely that 3 and 4 hold. For cut interdiction problem, 5 shows connections
between normalized mincut and the original interdiction problem. Recall that we observe the
denominator in normalized min-cut can be relaxed (that is, we can use w(C\F)

B−c(F) for any B > b,
instead of restricting to B = b + 1) and the analysis still works. Now following the previous
argument for 5, we assume λ ∈ [0,ϵ] for small enough positive ϵ. For any C , we have F = C
since w(C \ F) is dominating. For the remaining term −λ(b − c(F)) we are selecting a cut F
with smallest cose with respect to c. Note that we can assume that any cut in G has larger cost
than b since otherwise the optimum is simply 0. Let B be the minimum cost of cuts in G. We
have −λ(b − B) ≤ w(C \ F) − λ(b − c(F)) for any cut C and F ⊊ C . Thus the upperbound is
ϵ =min w(C\F)

B−c(F) . Note that B − c(F) is always positive since otherwise the curve is not concave.
Now we depict the curve. The first segment is determined by C = F ∈ argminX⊆V c(δ(X )). The

first breakpoint is ϵ =min w(C\F)
B−c(F) and for the second segment we have (C , F) ∈ arg min w(C\F)

B−c(F) with
minimum c(F). Now there are two cases:

1. if c(F)≤ b, then the first breakpoint is the optimal λ.

2. if c(F) ∈ (b, B), we have to look at more segments.

Unfortunately, the seconds case is possible (consider a path with parallel edges) and the number
of segments can be exponential.

2.3 differences
Consider L(λ) for cut problem. One can see that the optimal λ is clearly 0 since L(λ) is pwl
concave and the slope is negative at λ= 0. What we are really interested in is the first segment
on L. At the left end, L(0) is exactly the weight of minimum cut. (the complementary slackness
condition is satisfied.) At the right end, as we have shown in the previous paragraph, λ equals to
the value of the strength (which is the optimum of the linear relaxation of the cut IP). However,
for cut interdiction problems L(0) is not the optimum.

2.4 integrality gap
I guess the 2-approximate min-cut enumeration algorithm implies an integrality gap of 2 for cut
interdiction problem. Which is wrong.
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First consider the dual of linear relaxation of Equation 1.

max
∑

T

zT − bλ

s.t.
∑

T∋e

zT ≤ w(e) ∀e ∈ E

∑

T∋e

zT ≤ c(e)λ ∀e ∈ E

zT ,λ≥ 0

(2)

Weight truncation Assuming that the optimal λ to the LP dual is known, Equation 2 in fact gives
the idea of weight truncation. The capacity of each edge e in the “tree packing” is min{c(e)λ, w(e)}.
Therefore, the optimum of Equation 2 is Λ f r

wτ
− bλ, where Λ f r

wτ
is the fractional mincut on G with

weights wτ.

The optimal λ Denote by λ∗ the optimal λ that maximizes L(λ). From the previous argument
on the first segment of L(λ) we know that λ∗ ≥ min w(C\F)

B−c(F) . Now assume λ∗ > minc(F)≤b
w(C\F)
b−c(F) .

We have min w(C \ F) − λ∗(b − c(F)) < w(C \ F) − minc(F)≤b
w(C\F)
b−c(F) (b − c(F)) = 0 since the

optimum must be achieved by F such that 0≤ b− c(F)(the slope). The negative optimum of L(λ)
contradicts the fact that L(0) = 0 and L is concave. Hence, the optimal solution λ∗ is in the range
[min w(C\F)

B−c(F) ,minc(F)≤b
w(C\F)
b−c(F) ].

It would be nice if we can prove that any breakpoint is of the form min w(C\F)
b′−c(F) for some b′ ∈ [b, B].

However, this seems incorrect. Let {(C0, F0), . . . , (Ch, Fh)} be the sequence of solutions for each
segment on L(λ) and let λ1 < · · ·< λh be the sequence of breakpoints. (λi is the intersection of
the corresponding segments of (Ci−1, Fi−1) and (Ci, Fi).)

Lemma 2.1 λi =min w(C\F)−w(Ci−1\Fi−1)
c(Fi−1)−c(F) , where the minimum is taken over all cut C and F ⊆ C such

that both the numerator and denominator are positive.

The proof is using the argument for showing λ1 =min w(C\F)
B−c(F) and induction. λi looks similar to

normalized mincut but is related to the slope and vertical intercept of a previous segment.

Conjecture 2.2 Equation 1 has an integrality gap of 4.

However, Conjecture 2.2 is wrong. The integrality gap is unbounded. Consider a cycle Cn of n
vertices with two special edges e1, e2. Let L be a large number.

w(e) =







1 e = e1

L e = e2

2 else

, c(e) =

¨

L e = e1

1 else
, b = 2− ε

For IP, it is clear that F = {e2}, C \ F = {e1} and the optimum is 1
For LP, we assign x = 0 and ye =

1
n−2 for every edge except e1. The optimum is 0.

What is the gap if we only relax λ in the Lagrangian dual?

3 LP method
Consider the following IP for connectivity interdiction:

5



min
∑

e

xew(e)

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T (x + y is a cut)

∑

e

yec(e)≤ b (budget for F)

ye, xe ∈ {0, 1} ∀e

We write its Lagrangian dual.

max
λ≥0

min
cut C and F ⊆ C

w(C − F)−λ(b− c(F))

For fixed λ, we define L(λ) = min
cut C and F ⊆ C

w(C)−w(F) +λc(F). Note that the Lagrangian dual

is maxλ L(λ)−λb.
If the optimal C∗ of L(λ) is known, any edge in C∗ with w(e)≥ c(e)λ will be added to F ∗. So

now the hard part is to find C∗. We reweight edges.

wλ(e) =

¨

w(e) if w(e)< λ · c(e) (light elem)

λ · c(e) otherwise (heavy elem)

Then clearly edges in F ∗ are heavy and edges in C∗ − F ∗ are light.
Now consider the min cut under capacity wλ. For any cut C in G, its capacity wλ(C) can be

write as the sum of heavy elements (λc(F)) and light elements (w(C − F)) which is at least L(λ).
On the other hand, C∗ is a feasible cut and the capacity of C∗ is exactly L(λ). Thus C∗ is a mincut
in the reweighted graph and we can easily find it.

3.1 Approximation
How is C∗ related to the optimal solution to IP?

One can see that the Lagrangian dual (denoted by LD) is at most the optimum of IP. So we
have OPT(LD)≤ OPT(I P).

We can assume WLOG that the optimal λ∗ in LD is the intersection of two lines with positive and
negative slopes. Then there exists an optimal solution (λ∗, C LD, F LD) to LD such that c(F LD)≤ b.
Then we have

L(λ∗)≥ OPT(LD) +λ∗b−λc(F LD) = w(C LD − F LD)≥ OPT(I P) = w(C∗ − F ∗), (3)

since OPT(I P) is the smallest b-free min cut.
We have L(λ∗) ≤ wλ∗(C∗) since L(λ∗) is the value of the minimum cut in (G, wλ∗). Now we

prove L(λ∗) + bλ≥ wλ∗(C∗).

L(λ∗) + bλ∗ ≥ OPT(I P) +λ∗c(F ∗)
= w(C∗ − F ∗) +λ∗c(F ∗)
≥ wλ∗(C

∗)

The first line uses Equation 3 and the fact that c(F ∗)≤ b. The last line follows from the definition
of wλ. Finally the approximation guarantee wλ∗(C∗) ∈ [L(λ∗), 2L(λ∗)) easily follows since L(λ∗)−
λ∗b = LD > 0.
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3.2 complexity

b-FREE MINCUT(G, w, c, b):
compute λ∗ using parametric search
reweight G with wλ
for each 2-approx mincut C in (G, wλ):

run FPTAS for knapsack to compute min {w(C − F)|F ⊆ C , c(F)≤ b}
return the optimal (C , F)

To compute λ∗ we need to use parametric search.

Lemma 3.1 ( [6]) Let S(n) be the complexity of solving the Lagrangian dual problem for fixed λ
(where n is the size of the input), then one can compute λ∗ using parametric search in O(S(n)2) time.

It follows directly from the preceding lemma that λ∗ can be computed in Õ(m2) time.
Reweighting the graph takes linear time. Finding < 2-approx mincut takes Õ(n3). An 1+ ϵ

approximate solution to knapsack can be found in time Õ(m+ 1
ϵ2 ) [3]. The total complexity is

Õ(mn3 + n3

ϵ2 ).
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A remove box constraints
Given a positive covering LP,

LP1=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

c(e)≥ xe ≥ 0 ∀e,
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we want to remove constraints c(e)≥ xe. Consider the following LP,

LP2=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

∑

e∈T\ f

c(e)xe ≥ k− c( f ) ∀T ∀ f ∈ T

xe ≥ 0 ∀e,

These two LPs have the same optimum. Any feasible solution to LP1 is feasible in LP2. Thus
OPT(LP1) ≥ OPT(LP2). Next we show that any xe in the optimum solution to LP2 is always
in [0, c(e)]. Let x∗ be the optimum and suppose that c( f ) < x f ∈ x∗. Consider all constraints
∑

e∈T\ f c(e)xe ≥ k − c( f ) on T ∋ f . For any such constraint, we have
∑

e∈T c(e)xe > k since we
assume x f > c( f ), which means we can decrease x f without violating any constraint. Thus it
contradicts the assumption that x∗ is optimal. Then we can add redundant constraints xe ≤ c(e) ∀e
to LP2 and see that LP1 and LP2 have the same optimum.

This applies to [1] but cannot get an improvement on their algorithm.(MWU does not care the
number of constraints.)

min
cut C, f ∈C

∑

e∈C\{ f }w(e)xe

k− c( f )
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