
1 “Cut-free” Proof
Problem 1 (b-free knapsack) Consider a set of elements E and two weights w : E → Z+ and
c : E→ Z+ and a budget b ∈ Z+. Given a feasible set F ⊆ 2E, find minX∈F,F⊆E w(X \ F) such that
c(F)≤ b.

Always remember that F is usually not explicitly given.

Problem 2 (Normalized knapsack) Given the same input as Problem 1, find min
X∈F,F⊆E

w(X\F)
B−c(F) such

that c(F)≤ b.

In [4] the normalized min-cut problem use B = b+ 1. Here we use any integer B > b and see
how their method works.

Denote by τ the optimum of Problem 2. Define a new weight wτ : E→ R,

wτ(e) =

¨

w(e) if w(e)< τ · c(e) (light elem)
τ · c(e) otherwise (heavy elem)

Lemma 1.1 Let (X N , F N ) be the optimal solution to Problem 2. Every element in F N is heavy.

The proof is exactly the same as [4, Lemma 1].
The following two lemmas show (a general version of) that the optimal cut CN to normalized

min-cut is exactly the minimum cut under weights wτ.

Lemma 1.2 For any X ∈ F, wτ(X )≥ τB.

Lemma 1.3 X N ∈ arg min
X∈F

wτ(X ).

Proof:

wτ(X
N )≤ w(X N \ F N ) +wτ(F

N)
= τ · (B − c(F N )) +τ · c(F N )
= τB

Thus by Lemma 1.2, X N gets the minimum. □

Now we show the counter part of [4, Theorem 5], which states the optimal solution to
Problem 1 is a α-approximate solution to minF∈F wτ(F).

Lemma 1.4 (Lemma 4 in [4]) Let (X ∗, F ∗) be the optimal solution to Problem 1. X ∗ is either
an α-approximate solution to minX∈F wτ(X ) for some α > 1, or w(X ∗ \ F ∗)≥ τ(αB − b).

Then following the argument of Corollary 1 in [4], assume that X ∗ is not an α-approximate
solution to minX∈F wτ(X ) for some α > 1. We have

w(CN \ F N )
w(C∗ \ F ∗)

≤
τ(B − c(F N ))
τ(αB − b)

≤
B

αB − b
,

where the second inequality uses Lemma 1.4. One can see that if α > 2, w(CN\F N )
w(C∗\F∗) ≤

B
αB−b < 1

which implies (C∗, F ∗) is not optimal. Thus for α > 2, X ∗ must be a 2-approximate solution to
minX∈F wτ(X ).

Finally we get a knapsack version of Theorem 4:

Theorem 1.5 (Theorem 4 in [4]) Let X min be the optimal solution to minX∈F wτ(X ). The opti-
mal set X ∗ in Problem 1 is a 2-approximation to X min.

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time alg for finding all 2-approximations to minX∈F wτ(X ).

1



FPTAS for Problem 2 in [4] (The name “FPTAS” here is not precise since we do not have a
approximation scheme but an enumeration algorithm. But I will use this term anyway.) In their
settings, F is the collection of all cuts in some graph. Let OPTN be the optimum of Problem 2.
We can assume that there is no X ∈ F s.t. c(X ) ≤ b since this is polynomially detectable
(through min-cut on c(·)) and the optimum is 0. Thus we have 1

b+1 ≤ OPTN ≤ |E| ·maxe w(e).
Then we enumerate (1+ϵ)

i

b+1 where i ∈
�

0, 1, . . . ,
�

log1+ϵ(|E|wmax(b+ 1))
�	

. There is a feasible i s.t.
(1− ϵ)OPTN ≤ (1+ϵ)i

b+1 ≤ OPTN since (1+ϵ)
i

b+1 ≤ OPTN ≤ (1+ϵ)i+1

b+1 holds for some i.
Note that this enumeration scheme also holds for arbitrary F if we have a non-zero lower-

bound on OPTN .
Conjecture 1.6 Let (C , F) be the optimal solution to connectivity interdiction. The optimum cut
C can be computed in polynomial time. In other words, connectivity interdiction is almost as easy
as knapsack.

2 Connections
For unit costs, connectivity interdiction with budget b = k− 1 is the same problem as finding
the minimum weighted edge set whose removal breaks k-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of [4] ⊆ authors
of [1].

How to derive normalized min cut for connectivity interdiction?

max z

s.t.
∑

e

yec(e)≤ B (budget for F)
∑

e∈T

xe ≥ 1 ∀T (x is a cut)
∑

e

min(0, xe − ye)w(e)≥ z

ye, xe ∈ {0, 1} ∀e

we can assume that ye ≤ xe.

min
∑

e

(xe − ye)w(e)

s.t.
∑

e∈T

xe ≥ 1 ∀T (x is a cut)
∑

e

yec(e)≤ B (budget for F)

xe ≥ ye ∀e (F ⊆ C)
ye, xe ∈ {0, 1} ∀e

Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new x is x − y) gives us the following,

min
∑

e

xew(e)

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T (x + y is a cut)
∑

e

yec(e)≤ b (budget for F)

ye, xe ∈ {0, 1} ∀e

(1)
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Note that now this is almost a positive covering LP. Let L(λ) = min{w(C \ F) − λ(b −
c(F))|∀cut C ∀F ⊆ C}. Consider the Lagrangian dual,

max
λ≥0

L(λ) =max
λ≥0

min {w(C \ F)−λ(b− c(F))|∀cut C ∀F ⊆ C}

We have shown that the budget B in normalized min-cut does not really matter as long as
B > b. Note that L(λ) and the normalized min-cut look similar to the principal sequence of
partitions of a graph and the graph strength problem.

2.1 graph strength
Given a graph G = (V, E) and a cost function c : V → Z+, the strength σ(G) is defined as
σ(G) =minΠ

c(δ(Π))
|Π|−1 , where Π is any partition of V , |Π| is the number of parts in the partition

and δ(Π) is the set of edges between parts. Note that an alternative formulation of strength
(using graphic matroid rank) is σ(G) = minF⊆E

|E−F |
r(E)−r(F) , which in general is the fractional

optimum of matroid base packing.
The principal sequence of partitions of G is a piecewise linear concave curve L(λ) =

minΠ c(δ(Π)) − λ|Π|. (L(λ) = minF∈E c(E \ F) − λ(r(E) − r(F) + 1)) Cunningham used prin-
cipal partition to computed graph strength [3]. There is a list of good properties mentioned
in [2, Section 6](implicated stated in [3]).

1. We can assume G is connected and deal with the smallest strength component. One
can see this by fractional base packing on the direct sum of matroids. Note that on
disconnected graphs we should use the edge set definition instead of partitions.

2. L(λ) is piecewise linear concave since it is the lower envelope of some line arrangement.

3. For each line segment on L(λ) there is a corresponding partition Π. If λ∗ is a breakpoint
on L(λ), then there are two optimal solution (say partitions P1 and P2, assume |P1| ≤ |P2|)
to minΠ c(δ(Π))−λ∗|Π|. Then P2 is a refinement of P1.

Proof (sketch): Suppose that P2 is not a refinement of P1. We claim that the meet of P1

and P2 achieves a objective value at least no larger than P1 or P2 does. The correspondence
between graphic matroid rank function and partitions of V gives us a reformulation
L(λ∗) =minF⊆E c(E − F)−λ∗(r(E)− r(F) + 1). Here F is the set of edges in each part of
Π. Let g(F) = c(E − F) +λ∗r(F)−λ∗n. Then the claim is equivalent to the fact that for
two optimal solutions F1, F2 to L(λ∗), g(F1 ∩ F2)≤ g(F1) = g(F2)≤ g(F1 ∪ F2), which can
be seen by the submodularity of g and the optimality of F1, F2. □

The number of breakpoints on L(λ) is at most n− 1.

4. Let λ∗ be a breakpoint on L(λ) induced by edge set F . The next breakpoint is induced by
the edge set F ′ ⊆ F and F ′ is the solution to strength problem on the smallest strength
component of F . λ∗ is the strength of the smallest strength component in F . These
claims can be seen by the following arguments. From the previous bullet we have
min∆F c(E − F +∆F)−λ∗(r(E)− r(F −∆F) + 1) = L(λ∗). Consider the largest λ∗ which
allows ∆F = ; to be an optimal solution. Such λ∗ would be the next breakpoint. For any
∆F , c(E − F +∆F)−λ∗(r(E)− r(F −∆F) + 1)≥ c(E − F)−λ∗(r(E)− r(F) + 1). Thus we
have λ∗ ≤ c(∆F)

r(F)−r(F−∆F) .

5. Consider λ ∈ [0,ϵ] for some small enough ϵ. The Lagrangian dual minF c(E \F)−λ(r(E)−
r(F) + 1) gets the optimum at F = E. That is c(E \ F ′)−λ(r(E)− r(F ′) + 1) > −λ for all
F ′ ⊊ E. We are interested in the upperbound ϵ of λ such that the optimal F is a proper
subset of E when λ > ϵ. Therefore, the upperbound is ϵ = minF⊊E c(E\F)

r(E)−r(F) , which is
exactly the strength.
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2.2 principal sequence of partitions for cut interdiction
Now we focus on L(λ) =min{w(C \ F)−λ(b− c(F))|∀cut C ∀F ⊆ C}. We can still assume that
G is connected and see that L(λ) is pwl concave (1 and 2 still hold). Let λ∗ be a breakpoint
on L. Suppose that there are two optimal solutions (C1, F1) and (C2, F2) at λ∗. For fixed C
(C1 = C2), the same argument for principal partition still works. However, the difficult part is
that C might not be the same. So it’s unlikely that 3 and 4 hold. For cut interdiction problem,
5 shows connections between normalized mincut and the original interdiction problem. Recall
that we observe the denominator in normalized min-cut can be relaxed (that is, we can use
w(C\F)
B−c(F) for any B > b, instead of restricting to B = b + 1) and the analysis still works. Now
following the previous argument for 5, we assume λ ∈ [0,ϵ] for small enough positive ϵ. For
any C , we have F = C since w(C \ F) is dominating. For the remaining term −λ(b− c(F)) we
are selecting a cut F with smallest cose with respect to c. Note that we can assume that any
cut in G has larger cost than b since otherwise the optimum is simply 0. Let B be the minimum
cost of cuts in G. We have −λ(b− B)≤ w(C \ F)−λ(b− c(F)) for any cut C and F ⊊ C . Thus
the upperbound is ϵ =min w(C\F)

B−c(F) .

It remains to show that the optimal solution at ϵ guarantees c(F)≤ b? or maybe we don’t
need this for normalized mincut. I think normalized min-cut should not require c(F) ≤ b.
Further checks are needed. What we can guarantee is that c(F)≤ B.

2.3 differences
Consider L(λ) for cut problem. One can see that the optimal λ is clearly 0 since L(λ) is pwl
concave and the slope is negative at λ= 0. What we are really interested in is the first segment
on L. At the left end, L(0) is exactly the weight of minimum cut. (the complementary slackness
condition is satisfied.) At the right end, as we have shown in the previous paragraph, λ equals
to the value of the strength (which is the optimum of the linear relaxation of the cut IP).
However, for cut interdiction problems L(0) is not the optimum.

2.4 normalized mincut
I read this trick in sparsest cut notes1. First we write a IP for normalized mincut.

min

∑

e w(e)xe

b+ 1−
∑

e c(e)ye

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T

∑

e

yec(e)≤ b

ye, xe ∈ {0, 1} ∀e

(2)

A lp relaxation would be the following,

min
∑

e

w(e)xe

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T

∑

e

yec(e) = b

ye, xe ≥ 0 ∀e

(3)

1https://courses.grainger.illinois.edu/cs598csc/fa2024/Notes/lec-sparsest-cut.pdf
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Note that we are forcing b+ 1−
∑

e c(e)ye = 1.

2.5 integrality gap
I guess the 2-approximate min-cut enumeration algorithm implies an integrality gap of 2 for
cut interdiction problem.

First consider the dual of linear relaxation of Equation 1.

max
∑

T

zT − bλ

s.t.
∑

T∋e

zT ≤ w(e) ∀e ∈ E

∑

T∋e

zT ≤ c(e)λ ∀e ∈ E

zT ,λ≥ 0

(4)

We want to prove something like tree packing theorem for Equation 4.

Conjecture 2.1 The optimum of Equation 4 is min
¦

w(C\F)
B−c(F) |∀cut C , c(F)≤ b

©

, where B is the cost
of mincut in G and b is the budget.

I believe the previous conjecture is not likely to be true.
Weight truncation Assuming we know the optimal λ to the LP dual, Equation 4 in fact
gives the idea of weight truncation. The capacity of each edge e in the “tree packing” is
min{c(e)λ, w(e)}. Therefore, the optimum of Equation 4 is Λwτ− bλ, where Λwτ is the fractional
mincut on G with weights wτ.
The optimal λ Denote by λ∗ the optimal λ that maximizes L(λ). From the previous argument
on the first segment of L(λ)we know that λ∗ ≥min w(C\F)

B−c(F) . Now assume λ∗ >minc(F)≤b
w(C\F)
b−c(F) . We

have min w(C \ F)−λ∗(b− c(F))< w(C \ F)−minc(F)≤b
w(C\F)
b−c(F) (b− c(F)) = 0 since the optimum

must be achieved by F such that 0 ≤ b − c(F)(the slope). The negative optimum of L(λ)
contradicts the fact that L(0) = 0 and L is concave. Hence, the optimal solution λ∗ is in the
range [min w(C\F)

B−c(F) , minc(F)≤b
w(C\F)
b−c(F) ].

It would be nice if we can prove that any breakpoint is of the form min w(C\F)
b′−c(F) for some

b′ ∈ [b, B]. However, this seems incorrect. Let {(C0, F0), . . . , (Ch, Fh)} be the sequence of solutions
for each segment on L(λ) and let λ1 < · · · < λh be the sequence of breakpoints. (λi is the
intersection of the corresponding segments of (Ci−1, Fi−1) and (Ci, Fi).)

Lemma 2.2 λi = min w(C\F)−w(Ci−1\Fi−1)
c(Fi−1)−c(F) , where the minimum is taken over all cut C and F ⊆ C

such that both the numerator and denominator are positive.

The proof is using the argument for showing λ1 =min w(C\F)
B−c(F) and induction. λi looks similar to

normalized mincut but is related to the slope and vertical intercept of a previous segment.

Conjecture 2.3 Equation 1 has an integrality gap of 2.

3 Random Stuff
3.1 remove box constraints
Given a positive covering LP,
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LP1=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

c(e)≥ xe ≥ 0 ∀e,

we want to remove constraints c(e)≥ xe. Consider the following LP,

LP2=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

∑

e∈T\ f

c(e)xe ≥ k− c( f ) ∀T ∀ f ∈ T

xe ≥ 0 ∀e,

These two LPs have the same optimum. Any feasible solution to LP1 is feasible in LP2.
Thus OPT(LP1) ≥ OPT(LP2). Next we show that any xe in the optimum solution to LP2 is
always in [0, c(e)]. Let x∗ be the optimum and suppose that c( f ) < x f ∈ x∗. Consider all
constraints
∑

e∈T\ f c(e)xe ≥ k− c( f ) on T ∋ f . For any such constraint, we have
∑

e∈T c(e)xe > k
since we assume x f > c( f ), which means we can decrease x f without violating any constraint.
Thus it contradicts the assumption that x∗ is optimal. Then we can add redundant constraints
xe ≤ c(e) ∀e to LP2 and see that LP1 and LP2 have the same optimum.

This applies to [1] but cannot get an improvement on their algorithm.(MWU does not care
the number of constraints.) So does this trick apply to connectivity interdiction?

min
cut C, f ∈C

∑

e∈C\{ f }w(e)xe

k− c( f )
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