
1 “Cut-free” Proof
Problem 1 (b-free knapsack) Consider a set of elements 𝐸 and two weights𝑤 ∶ 𝐸 → ℤ+ and
𝑐 ∶ 𝐸 → ℤ+ and a budget 𝑏 ∈ ℤ+. Given a feasible set F ⊂ 2𝐸 , find min𝑋∈F,𝐹⊂𝐸 𝑤(𝑋 ∖ 𝐹) such
that 𝑐(𝐹) ≤ 𝑏.
Always remember that F is usually not explicitly given.
Problem 2 (Normalized knapsack) Given the same input as Problem 1, find min

𝑋∈F,𝐹⊂𝐸
𝑤(𝑋∖𝐹)
𝐵−𝑐(𝐹)

such that 𝑐(𝐹) ≤ 𝑏.
In [4] the normalized min-cut problem use 𝐵 = 𝑏+1. Here we use any integer 𝐵 > 𝑏 and see
how their method works.

Denote by 𝜏 the optimum of Problem 2. Define a new weight 𝑤𝜏 ∶ E→ ℝ,

𝑤𝜏(𝑒) = {
𝑤(𝑒) if 𝑤(𝑒) < 𝜏 ⋅ 𝑐(𝑒) (light elem)
𝜏 ⋅ 𝑐(𝑒) otherwise (heavy elem)

Lemma 1.1 Let (𝑋𝑁, 𝐹𝑁) be the optimal solution to Problem 2. Every element in 𝐹𝑁 is heavy.
The proof is exactly the same as [4, Lemma 1].

The following two lemmas show (a general version of) that the optimal cut 𝐶𝑁 to nor-
malized min-cut is exactly the minimum cut under weights 𝑤𝜏 .
Lemma 1.2 For any 𝑋 ∈ F, 𝑤𝜏(𝑋) ≥ 𝜏𝐵.
Lemma 1.3 𝑋𝑁 ∈ argmin

𝑋∈F
𝑤𝜏(𝑋).

Proof:
𝑤𝜏(𝑋𝑁) ≤ 𝑤(𝑋𝑁 ∖ 𝐹𝑁) + 𝑤𝜏(𝐹𝑁)

= 𝜏 ⋅ (𝐵 − 𝑐(𝐹𝑁)) + 𝜏 ⋅ 𝑐(𝐹𝑁)
= 𝜏𝐵

Thus by Lemma 1.2, 𝑋𝑁 gets the minimum. 2

Now we show the counter part of [4, Theorem 5], which states the optimal solution to
Problem 1 is a 𝛼-approximate solution to min𝐹∈F 𝑤𝜏(𝐹).
Lemma 1.4 (Lemma 4 in [4]) Let (𝑋∗, 𝐹∗) be the optimal solution to Problem 1. 𝑋∗ is either
an 𝛼-approximate solution to min𝑋∈F 𝑤𝜏(𝑋) for some 𝛼 > 1, or 𝑤(𝑋∗ ∖ 𝐹∗) ≥ 𝜏(𝛼𝐵 − 𝑏).

Then following the argument of Corollary 1 in [4], assume that 𝑋∗ is not an𝛼-approximate
solution to min𝑋∈F 𝑤𝜏(𝑋) for some 𝛼 > 1. We have

𝑤(𝐶𝑁 ∖ 𝐹𝑁)
𝑤(𝐶∗ ∖ 𝐹∗) ≤

𝜏(𝐵 − 𝑐(𝐹𝑁))
𝜏(𝛼𝐵 − 𝑏) ≤ 𝐵

𝛼𝐵 − 𝑏,

where the second inequality uses Lemma 1.4. One can see that if 𝛼 > 2, 𝑤(𝐶
𝑁∖𝐹𝑁)

𝑤(𝐶∗∖𝐹∗) ≤
𝐵

𝛼𝐵−𝑏 < 1
which implies (𝐶∗, 𝐹∗) is not optimal. Thus for 𝛼 > 2, 𝑋∗ must be a 2-approximate solution
to min𝑋∈F 𝑤𝜏(𝑋).

Finally we get a knapsack version of Theorem 4:
Theorem 1.5 (Theorem 4 in [4]) Let 𝑋min be the optimal solution to min𝑋∈F 𝑤𝜏(𝑋). The opti-
mal set 𝑋∗ in Problem 1 is a 2-approximation to 𝑋min.

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time alg for finding all 2-approximations to min𝑋∈F 𝑤𝜏(𝑋).
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FPTAS for Problem 2 in [4] (The name “FPTAS” here is not precise since we do not have a
approximation scheme but an enumeration algorithm. But I will use this term anyway.) In
their settings, F is the collection of all cuts in some graph. Let OPT𝑁 be the optimum of
Problem 2. We can assume that there is no 𝑋 ∈ F s.t. 𝑐(𝑋) ≤ 𝑏 since this is polynomially
detectable (through min-cut on 𝑐(⋅)) and the optimum is 0. Thus we have 1

𝑏+1 ≤ OPT
𝑁 ≤

|𝐸| ⋅max𝑒𝑤(𝑒). Then we enumerate
(1+𝜀)𝑖
𝑏+1 where 𝑖 ∈ {0, 1, … , ⌊log1+𝜀(|𝐸|𝑤max(𝑏 + 1))⌋}. There

is a feasible 𝑖 s.t. (1 − 𝜀)OPT𝑁 ≤ (1+𝜀)𝑖
𝑏+1 ≤ OPT𝑁 since (1+𝜀)𝑖

𝑏+1 ≤ OPT𝑁 ≤ (1+𝜀)𝑖+1
𝑏+1 holds for some 𝑖.

Note that this enumeration scheme also holds for arbitrary F if we have a non-zero
lowerbound on OPT𝑁.

Conjecture 1.6 Let (𝐶, 𝐹) be the optimal solution to connectivity interdiction. The optimum
cut 𝐶 can be computed in polynomial time. In other words, connectivity interdiction is
almost as easy as knapsack.

2 Connections
For unit costs, connectivity interdiction with budget 𝑏 = 𝑘−1 is the same problem as finding
the minimum weighted edge set whose removal breaks 𝑘-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of [4] ⊂
authors of [1].

How to derive normalized min cut for connectivity interdiction?

max 𝑧
𝑠.𝑡. ∑

𝑒
𝑦𝑒𝑐(𝑒) ≤ 𝐵 (budget for 𝐹)

∑
𝑒∈𝑇

𝑥𝑒 ≥ 1 ∀𝑇 (𝑥 is a cut)

∑
𝑒
min(0, 𝑥𝑒 − 𝑦𝑒)𝑤(𝑒) ≥ 𝑧

𝑦𝑒, 𝑥𝑒 ∈ {0, 1} ∀𝑒
we can assume that 𝑦𝑒 ≤ 𝑥𝑒.

min ∑
𝑒
(𝑥𝑒 − 𝑦𝑒)𝑤(𝑒)

𝑠.𝑡. ∑
𝑒∈𝑇

𝑥𝑒 ≥ 1 ∀𝑇 (𝑥 is a cut)

∑
𝑒
𝑦𝑒𝑐(𝑒) ≤ 𝐵 (budget for 𝐹)

𝑥𝑒 ≥ 𝑦𝑒 ∀𝑒 (𝐹 ⊂ 𝐶)
𝑦𝑒, 𝑥𝑒 ∈ {0, 1} ∀𝑒

Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new 𝑥 is 𝑥 − 𝑦) gives us the following,
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min ∑
𝑒
𝑥𝑒𝑤(𝑒)

𝑠.𝑡. ∑
𝑒∈𝑇

𝑥𝑒 + 𝑦𝑒 ≥ 1 ∀𝑇 (𝑥 + 𝑦 is a cut)

∑
𝑒
𝑦𝑒𝑐(𝑒) ≤ 𝑏 (budget for 𝐹)

𝑦𝑒, 𝑥𝑒 ∈ {0, 1} ∀𝑒

(1)

Note that now this is almost a positive covering LP. Let 𝐿(𝜆) = min{𝑤(𝐶 ∖ 𝐹) − 𝜆(𝑏 −
𝑐(𝐹))|∀cut 𝐶 ∀𝐹 ⊂ 𝐶}. Consider the Lagrangian dual,

max
𝜆≥0

𝐿(𝜆) = max
𝜆≥0

min {𝑤(𝐶 ∖ 𝐹) − 𝜆(𝑏 − 𝑐(𝐹))|∀cut 𝐶 ∀𝐹 ⊂ 𝐶}

We have shown that the budget 𝐵 in normalized min-cut does not really matter as long
as 𝐵 > 𝑏. Note that 𝐿(𝜆) and the normalized min-cut look similar to the principal sequence
of partitions of a graph and the graph strength problem.

2.1 graph strength
Given a graph 𝐺 = (𝑉, 𝐸) and a cost function 𝑐 ∶ 𝑉 → ℤ+, the strength 𝜎(𝐺) is defined
as 𝜎(𝐺) = minΠ

𝑐(𝛿(Π))
|Π|−1 , where Π is any partition of 𝑉 , |Π| is the number of parts in the

partition and 𝛿(Π) is the set of edges between parts. Note that an alternative formulation
of strength (using graphic matroid rank) is 𝜎(𝐺) = min𝐹⊂𝐸

|𝐸−𝐹|
𝑟(𝐸)−𝑟(𝐹) , which in general is the

fractional optimum of matroid base packing.
The principal sequence of partitions of 𝐺 is a piecewise linear concave curve 𝐿(𝜆) =

minΠ 𝑐(𝛿(Π)) − 𝜆|Π|. (𝐿(𝜆) = min𝐹∈𝐸 𝑐(𝐸 ∖ 𝐹) − 𝜆(𝑟(𝐸) − 𝑟(𝐹) + 1)) Cunningham used principal
partition to computed graph strength [3]. There is a list of good properties mentioned
in [2, Section 6](implicated stated in [3]).

1. We can assume 𝐺 is connected and deal with the smallest strength component. One
can see this by fractional base packing on the direct sum of matroids. Note that on
disconnected graphs we should use the edge set definition instead of partitions.

2. 𝐿(𝜆) is piecewise linear concave since it is the lower envelope of some line arrange-
ment.

3. For each line segment on 𝐿(𝜆) there is a corresponding partitionΠ. If 𝜆∗ is a breakpoint
on 𝐿(𝜆), then there are two optimal solution (say partitions 𝑃1 and 𝑃2, assume |𝑃1| ≤
|𝑃2|) to minΠ 𝑐(𝛿(Π)) − 𝜆∗|Π|. Then 𝑃2 is a refinement of 𝑃1.

Proof (sketch): Suppose that 𝑃2 is not a refinement of 𝑃1. We claim that the meet
of 𝑃1 and 𝑃2 achieves a objective value at least no larger than 𝑃1 or 𝑃2 does. The
correspondence between graphic matroid rank function and partitions of 𝑉 gives us
a reformulation 𝐿(𝜆∗) = min𝐹⊂𝐸 𝑐(𝐸 − 𝐹) − 𝜆∗(𝑟(𝐸) − 𝑟(𝐹) + 1). Here 𝐹 is the set of edges
in each part of Π. Let 𝑔(𝐹) = 𝑐(𝐸 − 𝐹) + 𝜆∗𝑟(𝐹) − 𝜆∗𝑛. Then the claim is equivalent to the
fact that for two optimal solutions 𝐹1, 𝐹2 to 𝐿(𝜆∗), 𝑔(𝐹1 ∩ 𝐹2) ≤ 𝑔(𝐹1) = 𝑔(𝐹2) ≤ 𝑔(𝐹1 ∪ 𝐹2),
which can be seen by the submodularity of 𝑔 and the optimality of 𝐹1, 𝐹2. 2

The number of breakpoints on 𝐿(𝜆) is at most 𝑛 − 1.
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4. Let 𝜆∗ be a breakpoint on 𝐿(𝜆) induced by edge set 𝐹 . The next breakpoint is induced
by the edge set 𝐹′ ⊂ 𝐹 and 𝐹′ is the solution to strength problem on the smallest
strength component of 𝐹 . 𝜆∗ is the strength of the smallest strength component in 𝐹 .
These claims can be seen by the following arguments. From the previous bullet we
have minΔ𝐹 𝑐(𝐸 − 𝐹 + Δ𝐹) − 𝜆∗(𝑟(𝐸) − 𝑟(𝐹 − Δ𝐹) + 1) = 𝐿(𝜆∗). Consider the largest 𝜆∗ which
allows Δ𝐹 = ∅ to be an optimal solution. Such 𝜆∗ would be the next breakpoint. For
any Δ𝐹 , 𝑐(𝐸 − 𝐹 + Δ𝐹) − 𝜆∗(𝑟(𝐸) − 𝑟(𝐹 − Δ𝐹) + 1) ≥ 𝑐(𝐸 − 𝐹) − 𝜆∗(𝑟(𝐸) − 𝑟(𝐹) + 1). Thus we have
𝜆∗ ≤ 𝑐(Δ𝐹)

𝑟(𝐹)−𝑟(𝐹−Δ𝐹) .

5. Consider 𝜆 ∈ [0, ϵ] for some small enough ϵ. The Lagrangian dual min𝐹 𝑐(𝐸∖𝐹)−𝜆(𝑟(𝐸)−
𝑟(𝐹)+1) gets the optimum at 𝐹 = 𝐸. That is 𝑐(𝐸 ∖𝐹′) −𝜆(𝑟(𝐸)− 𝑟(𝐹′) +1) > −𝜆 for all 𝐹′ ⊊ 𝐸.
We are interested in the upperbound ϵ of 𝜆 such that the optimal 𝐹 is a proper subset
of 𝐸 when 𝜆 > ϵ. Therefore, the upperbound is ϵ = min𝐹⊊𝐸

𝑐(𝐸∖𝐹)
𝑟(𝐸)−𝑟(𝐹) , which is exactly the

strength.

2.2 principal sequence of partitions for cut interdiction
Nowwe focus on 𝐿(𝜆) = min{𝑤(𝐶∖𝐹)−𝜆(𝑏−𝑐(𝐹))|∀cut 𝐶 ∀𝐹 ⊂ 𝐶}. We can still assume that 𝐺 is
connected and see that 𝐿(𝜆) is pwl concave (1 and 2 still hold). Let 𝜆∗ be a breakpoint on 𝐿.
Suppose that there are two optimal solutions (𝐶1, 𝐹1) and (𝐶2, 𝐹2) at 𝜆∗. For fixed 𝐶 (𝐶1 = 𝐶2),
the same argument for principal partition still works. However, the difficult part is that 𝐶
might not be the same. So it’s unlikely that 3 and 4 hold. For cut interdiction problem,
5 shows connections between normalized mincut and the original interdiction problem.
Recall that we observe the denominator in normalized min-cut can be relaxed (that is, we
can use 𝑤(𝐶∖𝐹)

𝐵−𝑐(𝐹) for any 𝐵 > 𝑏, instead of restricting to 𝐵 = 𝑏 + 1) and the analysis still works.
Now following the previous argument for 5, we assume 𝜆 ∈ [0, ϵ] for small enough positive
ϵ. For any 𝐶, we have 𝐹 = 𝐶 since 𝑤(𝐶 ∖ 𝐹) is dominating. For the remaining term −𝜆(𝑏 − 𝑐(𝐹))
we are selecting a cut 𝐹 with smallest cose with respect to 𝑐. Note that we can assume that
any cut in 𝐺 has larger cost than 𝑏 since otherwise the optimum is simply 0. Let 𝐵 be the
minimum cost of cuts in 𝐺. We have −𝜆(𝑏 − 𝐵) ≤ 𝑤(𝐶 ∖ 𝐹) − 𝜆(𝑏 − 𝑐(𝐹)) for any cut 𝐶 and 𝐹 ⊊ 𝐶.
Thus the upperbound is ϵ = min 𝑤(𝐶∖𝐹)

𝐵−𝑐(𝐹) .

2.3 differences
Consider 𝐿(𝜆) for cut problem. One can see that the optimal 𝜆 is clearly 0 since 𝐿(𝜆) is pwl
concave and the slope is negative at 𝜆 = 0. What we are really interested in is the first seg-
ment on 𝐿. At the left end, 𝐿(0) is exactly the weight of minimum cut. (the complementary
slackness condition is satisfied.) At the right end, as we have shown in the previous para-
graph, 𝜆 equals to the value of the strength (which is the optimum of the linear relaxation
of the cut IP). However, for cut interdiction problems 𝐿(0) is not the optimum.

2.4 integrality gap
I guess the 2-approximate min-cut enumeration algorithm implies an integrality gap of 2
for cut interdiction problem.

First consider the dual of linear relaxation of Equation 1.
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max ∑
𝑇
𝑧𝑇 − 𝑏𝜆

𝑠.𝑡. ∑
𝑇∋𝑒

𝑧𝑇 ≤ 𝑤(𝑒) ∀𝑒 ∈ 𝐸

∑
𝑇∋𝑒

𝑧𝑇 ≤ 𝑐(𝑒)𝜆 ∀𝑒 ∈ 𝐸

𝑧𝑇 , 𝜆 ≥ 0

(2)

We want to prove something like tree packing theorem for Equation 2.

Conjecture 2.1 The optimum of Equation 2 is min {𝑤(𝐶∖𝐹)𝐵−𝑐(𝐹) |∀cut 𝐶, 𝑐(𝐹) ≤ 𝑏}, where 𝐵 is the
cost of mincut in 𝐺 and 𝑏 is the budget.

I believe the previous conjecture is not likely to be true.
Weight truncation Assuming we know the optimal 𝜆 to the LP dual, Equation 2 in fact
gives the idea of weight truncation. The capacity of each edge 𝑒 in the “tree packing” is
min{𝑐(𝑒)𝜆, 𝑤(𝑒)}. Therefore, the optimum of Equation 2 is Λ𝑓𝑟𝑤𝜏 −𝑏𝜆, where Λ

𝑓𝑟
𝑤𝜏
is the fractional

mincut on 𝐺 with weights 𝑤𝜏 .
Theoptimal 𝜆 Denote by 𝜆∗ the optimal 𝜆 thatmaximizes 𝐿(𝜆). From the previous argument
on the first segment of 𝐿(𝜆) we know that 𝜆∗ ≥ min 𝑤(𝐶∖𝐹)

𝐵−𝑐(𝐹) . Now assume 𝜆
∗ > min𝑐(𝐹)≤𝑏

𝑤(𝐶∖𝐹)
𝑏−𝑐(𝐹) .

We have min𝑤(𝐶 ∖ 𝐹) − 𝜆∗(𝑏 − 𝑐(𝐹)) < 𝑤(𝐶 ∖ 𝐹) −min𝑐(𝐹)≤𝑏
𝑤(𝐶∖𝐹)
𝑏−𝑐(𝐹) (𝑏 − 𝑐(𝐹)) = 0 since the optimum

must be achieved by 𝐹 such that 0 ≤ 𝑏 − 𝑐(𝐹)(the slope). The negative optimum of 𝐿(𝜆)
contradicts the fact that 𝐿(0) = 0 and 𝐿 is concave. Hence, the optimal solution 𝜆∗ is in the
range [min 𝑤(𝐶∖𝐹)

𝐵−𝑐(𝐹) ,min𝑐(𝐹)≤𝑏
𝑤(𝐶∖𝐹)
𝑏−𝑐(𝐹) ].

It would be nice if we can prove that any breakpoint is of the form min 𝑤(𝐶∖𝐹)
𝑏′−𝑐(𝐹) for some

𝑏′ ∈ [𝑏, 𝐵]. However, this seems incorrect. Let {(𝐶0, 𝐹0), … , (𝐶ℎ, 𝐹ℎ)} be the sequence of
solutions for each segment on 𝐿(𝜆) and let 𝜆1 < ⋯ < 𝜆ℎ be the sequence of breakpoints. (𝜆𝑖
is the intersection of the corresponding segments of (𝐶𝑖−1, 𝐹𝑖−1) and (𝐶𝑖, 𝐹𝑖).)

Lemma 2.2 𝜆𝑖 = min
𝑤(𝐶∖𝐹)−𝑤(𝐶𝑖−1∖𝐹𝑖−1)

𝑐(𝐹𝑖−1)−𝑐(𝐹)
, where the minimum is taken over all cut 𝐶 and 𝐹 ⊂ 𝐶

such that both the numerator and denominator are positive.

The proof is using the argument for showing 𝜆1 = min
𝑤(𝐶∖𝐹)
𝐵−𝑐(𝐹) and induction. 𝜆𝑖 looks sim-

ilar to normalized mincut but is related to the slope and vertical intercept of a previous
segment.
Conjecture 2.3 Equation 1 has an integrality gap of 4.

However, Conjecture 2.3 is wrong. The integrality gap is unbounded. Consider a cycle
𝐶𝑛 of 𝑛 vertices with two special edges 𝑒1, 𝑒2. Let 𝐿 be a large number.

𝑤(𝑒) = {
1 𝑒 = 𝑒1
𝐿 𝑒 = 𝑒2
2 else

, 𝑐(𝑒) = {𝐿 𝑒 = 𝑒1
1 else

, 𝑏 = 2 − 𝜖

For IP, it is clear that 𝐹 = {𝑒2}, 𝐶 ∖ 𝐹 = {𝑒1} and the optimum is 1
For LP, we assign 𝑥 = 0 and 𝑦𝑒 =

1
𝑛−2 for every edge except 𝑒1. The optimum is 0.

What is the gap if we only relax 𝜆 in the Lagrangian dual?
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3 Random Stuff
3.1 remove box constraints
Given a positive covering LP,

𝐿𝑃1 = min ∑
𝑒
𝑤(𝑒)𝑥𝑒

𝑠.𝑡. ∑
𝑒∈𝑇

𝑐(𝑒)𝑥𝑒 ≥ 𝑘 ∀𝑇

𝑐(𝑒) ≥ 𝑥𝑒 ≥ 0 ∀𝑒,
we want to remove constraints 𝑐(𝑒) ≥ 𝑥𝑒. Consider the following LP,

𝐿𝑃2 = min ∑
𝑒
𝑤(𝑒)𝑥𝑒

𝑠.𝑡. ∑
𝑒∈𝑇

𝑐(𝑒)𝑥𝑒 ≥ 𝑘 ∀𝑇

∑
𝑒∈𝑇∖𝑓

𝑐(𝑒)𝑥𝑒 ≥ 𝑘 − 𝑐(𝑓) ∀𝑇 ∀𝑓 ∈ 𝑇

𝑥𝑒 ≥ 0 ∀𝑒,
These two LPs have the same optimum. Any feasible solution to LP1 is feasible in LP2.

Thus OPT(𝐿𝑃1) ≥ OPT(𝐿𝑃2). Next we show that any 𝑥𝑒 in the optimum solution to LP2 is
always in [0, 𝑐(𝑒)]. Let 𝑥∗ be the optimum and suppose that 𝑐(𝑓) < 𝑥𝑓 ∈ 𝑥∗. Consider all
constraints∑𝑒∈𝑇∖𝑓 𝑐(𝑒)𝑥𝑒 ≥ 𝑘−𝑐(𝑓) on 𝑇 ∋ 𝑓 . For any such constraint, we have∑𝑒∈𝑇 𝑐(𝑒)𝑥𝑒 > 𝑘
since we assume 𝑥𝑓 > 𝑐(𝑓), which means we can decrease 𝑥𝑓 without violating any con-
straint. Thus it contradicts the assumption that 𝑥∗ is optimal. Then we can add redundant
constraints 𝑥𝑒 ≤ 𝑐(𝑒) ∀𝑒 to LP2 and see that LP1 and LP2 have the same optimum.

This applies to [1] but cannot get an improvement on their algorithm.(MWU does not
care the number of constraints.) So does this trick apply to connectivity interdiction?

min
cut C,𝑓∈𝐶

∑𝑒∈𝐶∖{𝑓}𝑤(𝑒)𝑥𝑒
𝑘 − 𝑐(𝑓)
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