1 "Cut-free" Proof

Problem 1 (b-free knapsack) Consider a set of elements E and two weights $w : E \to \mathbb{Z}_+$ and $c : E \to Z_+$ and a budget $b \in \mathbb{Z}_+$. Given a feasible set $\mathcal{F} \subseteq 2^E$, find $\min_{X \in \mathcal{F}, F \subseteq E} w(X \setminus F)$ such that $c(F) \leq b$.

Always remember that \mathcal{F} is usually not explicitly given.

Problem 2 (Normalized knapsack) Given the same input as Problem 1, find $\min_{X \in \mathcal{F}, F \subseteq E} \frac{w(X \setminus F)}{b+1-c(F)}$ such that $c(F) \leq b$.

Denote by τ the optimum of Problem 2. Define a new weight $w_{\tau} : E \to \mathbb{R}$,

$$w_{\tau}(e) = \begin{cases} w(e) & \text{if } w(e) < \tau \cdot c(e) \text{ (light elem)} \\ \tau \cdot c(e) & \text{otherwise (heavy elem)} \end{cases}$$

Lemma 1.1 Let (X^N, F^N) be the optimal solution to Problem 2. Every element in F^N is heavy.

proof is exactly the same as lemma 1 in [2].

Lemma 1.2 For any $X \in \mathcal{F}$, $w_{\tau}(X) \geq \tau(1+b)$.

proof is the same.

Lemma 1.3 $X^N \in \arg\min_{X \in \mathcal{F}} w_{\tau}(X).$

Proof:

$$w_{\tau}(X^{N}) \leq w(X^{N} \setminus F^{N}) + w_{\tau}(F^{N})$$

= $\tau \cdot (b + 1 - c(F^{N})) + \tau \cdot c(F^{N})$
= $\tau (b + 1)$

Thus by Lemma 1.2, X^N gets the minimum.

Let (X^*, F^*) be the optimal solution to Problem 1.

Lemma 1.4 X^* is either an α -approximate solution to $\min_{X \in \mathcal{F}} w_{\tau}(X)$ for some $\alpha > 1$, or $w(X^* \setminus F^*) \ge \tau(\alpha + (\alpha - 1)b)$.

The proof is the same.

In fact, corollary 1 and theorem 5 are also the same as those in [2]. Finally we get a knapsack version of Theorem 4:

Theorem 1.5 (Theorem 4 in [2]) Let X^{\min} be the optimal solution to $\min_{X \in \mathcal{F}} w_{\tau}(X)$. The optimal set X^* in Problem 1 is a 2-approximation to X^{\min} .

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a polynomial time alg for finding all 2-approximations to $\min_{X \in \mathcal{F}} w_{\tau}(X)$.

FPTAS for Problem 2 in [2] (The name "FPTAS" here is not precise since we do not have a approximation scheme but an enumeration algorithm. But I will use this term anyway.) In their settings, \mathcal{F} is the collection of all cuts in some graph. Let OPT^N be the optimum of Problem 2. We can assume that there is no $X \in \mathcal{F}$ s.t. $c(X) \leq b$ since this is polynomially detectable (through min-cut on $c(\cdot)$) and the optimum is 0. Thus we have $\frac{1}{b+1} \leq OPT^N \leq$ $|E| \cdot \max_{e} w(e). \text{ Then we enumerate } \frac{(1+\varepsilon)^{i}}{b+1} \text{ where } i \in \{0, 1, \dots, \lfloor \log_{1+\varepsilon}(|E|w_{\max}(b+1)) \rfloor\}. \text{ There}$ is a feasible *i* s.t. $(1-\varepsilon) \operatorname{OPT}^{N} \leq \frac{(1+\varepsilon)^{i}}{b+1} \leq \operatorname{OPT}^{N}$ since $\frac{(1+\varepsilon)^{i}}{b+1} \leq \operatorname{OPT}^{N} \leq \frac{(1+\varepsilon)^{i+1}}{b+1}$ holds for some *i*. Note that this enumeration scheme also holds for arbitrary \mathcal{F} if we have a non-zero

lowerbound on OPT^N .

Conjecture 1.6 Let (C, F) be the optimal solution to connectivity interdiction. The optimum cut C can be computed in polynomial time. In other words, connectivity interdiction is almost as easy as knapsack.

Connections 2

For unit costs, connectivity interdiction with budget b = k - 1 is the same problem as finding the minimum weighted edge set whose removal breaks *k*-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of $[2] \subseteq$ authors of [1].

How to derive normalized min cut for connectivity interdiction?

$$\begin{array}{ccc} \max & z \\ s.t. & \sum_{e} y_e c(e) \leq B & (budget \text{ for } F) \\ & \sum_{e \in T} x_e \geq 1 & \forall T & (x \text{ forms a cut}) \\ & \sum_{e} \min(0, x_e - y_e) w(e) \geq z \\ & y_e, x_e \in \{0, 1\} & \forall e \end{array}$$

we can assume that $y_e \leq x_e$.

$$\min \sum_{e} (x_e - y_e) w(e)$$
s.t.
$$\sum_{e \in T} x_e \ge 1 \qquad \forall T \quad (x \text{ forms a cut})$$

$$\sum_{e} y_e c(e) \le B \qquad (\text{budget for } F)$$

$$x_e \ge y_e \qquad \forall e \quad (F \subseteq C)$$

$$y_e, x_e \in \{0, 1\} \qquad \forall e$$

Now this LP looks similar to the normalized min-cut problem. A further reformulation (the new x is x - y) gives us the following,

$$\min \sum_{e} x_e w(e)$$
s.t.
$$\sum_{e \in T} x_e + y_e \ge 1 \qquad \forall T \quad (x \text{ forms a cut})$$

$$\sum_{e} y_e c(e) \le B \qquad (\text{budget for } F)$$

$$y_e, x_e \in \{0, 1\} \quad \forall e$$

Note that now this is almost a positive covering LP. Let $L(\lambda) = \min\{w(C \setminus F) - \lambda(b - c(F)) | \forall \text{cut } C \forall F \subseteq C \}$ Consider the Lagrangian dual,

$$\max_{\lambda \ge 0} L(\lambda) = \max_{\lambda \ge 0} \min \{ w(C \setminus F) - \lambda(b - c(F)), \forall \text{cut } C \forall F \subseteq C \}$$

At this point, it becomes clear how the normalized min-cut is implicated in [2]. The optimum of normalized min-cut is exactly the value of λ when $L(\lambda)$ is 0.

3 Random Stuff

3.1 remove box constraints

Given a positive covering LP,

$$LP1 = \min \sum_{e \in T} w(e)x_e$$

s.t.
$$\sum_{e \in T} c(e)x_e \ge k \quad \forall T$$
$$c(e) \ge x_e \ge 0 \quad \forall e,$$

we want to remove constraints $c(e) \ge x_e$. Consider the following LP,

$$\begin{split} LP2 &= \min \quad \sum_{e} w(e) x_e \\ s.t. \quad \sum_{e \in T} c(e) x_e \geq k \qquad \forall T \\ &\sum_{e \in T \setminus f} c(e) x_e \geq k - c(f) \quad \forall T \; \forall f \in T \\ & x_e \geq 0 \qquad \forall e, \end{split}$$

These two LPs have the same optimum. One can see that any feasible solution to LP1 is feasible in LP2. Thus $OPT(LP1) \ge OPT(LP2)$. Next we show that any x_e in the optimum solution to LP2 is always in [0, c(e)]. Let x^* be the optimum and suppose that $c(f) < x_f \in x^*$. Consider all constraints $\sum_{e \in T \setminus f} c(e)x_e \ge k - c(f)$ on $T \ni f$. For any such constraint, we have $\sum_{e \in T} c(e)x_e > k$ since we assume $x_f > c(f)$, which means we can decrease x_f without violating any constraint. Thus it contradicts the assumption that x^* is optimal. Then we can add redundant constraints $x_e \le c(e) \forall e$ to LP2 and see that LP1 and LP2 have the same optimum.

This applies to [1] but cannot get an improvement on their algorithm.(MWU does not care the number of constraints.) So does this trick apply to connectivity interdiction?

$$\min_{\text{cut } C, f \in C} \frac{\sum_{e \in C \setminus \{f\}} w(e) x_e}{k - c(f)}$$

References

- [1] Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak, Pattara Sukprasert, and Sorrachai Yingchareonthawornchai. Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver. *LIPIcs, Volume* 229, ICALP 2022, 229:37:1–37:20, 2022.
- [2] Chien-Chung Huang, Nidia Obscura Acosta, and Sorrachai Yingchareonthawornchai. An FPTAS for Connectivity Interdiction. In Jens Vygen and Jarosław Byrka, editors, *Integer Programming and Combinatorial Optimization*, volume 14679, pages 210–223, Cham, 2024. Springer Nature Switzerland.