1 “Cut-free” Proof

Problem 1 (b-free knapsack) Consider a set of elements E and two weights w : E — Z_ and
¢:E— Z, and a budget b € Z,. Given a feasible set F C 2%, find miny g .y w(X \ F) such that
c(F)<b.

Always remember that J is usually not explicitly given.

w(X\F)
b+1—c(F)

Problem 2 (Normalized knapsack) Given the same input as Problem 1, find R rgranC .
(SO S
such that ¢(F) < b.

Denote by 7 the optimum of Problem 2. Define a new weight w_ : E — R,

(e) = w(e) if w(e) < 7 -c(e) (light elem)
W 7-c(e) otherwise (heavy elem)

Lemma 1.1 Let (XV,FN) be the optimal solution to Problem 2. Every element in FN is heavy.

proof is exactly the same as lemma 1 in [2].

Lemma 1.2 Forany X € ¥, w_(X) = 7(1+ b).

proof is the same.

Lemma 1.3 X" € argminw_(X).
Xeg

Proof:
w (XY) S wXN\FY) +w (FY)
=7-(b+1—c(F¥))+71-c(FV)
=1(b+1)
Thus by Lemma 1.2, X" gets the minimum. O

Let (X*, F*) be the optimal solution to Problem 1.

Lemma 1.4 X* is either an a-approximate solution to miny.sw.(X) for some a > 1, or
w(X*\ F*) > 1(a+ (a—1)b).

The proof is the same.
In fact, corollary 1 and theorem 5 are also the same as those in [2]. Finally we get a
knapsack version of Theorem 4:

Theorem 1.5 (Theorem 4 in [2]) Let X™" be the optimal solution to miny.sw.(X). The
optimal set X* in Problem 1 is a 2-approximation to X™™,

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time alg for finding all 2-approximations to miny s w.(X).
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FPTAS for Problem 2 in [2] (The name “FPTAS” here is not precise since we do not have
a approximation scheme but an enumeration algorithm. But I will use this term anyway.)
In their settings, J is the collection of all cuts in some graph. Let OPT" be the optimum of
Problem 2. We can assume that there is no X € F s.t. ¢(X) < b since this is polynomially
detectable (through min-cut on c(-)) and the optimum is 0. Thus we have ﬁ < OPTN <

|E|-max, w(e). Then we enumerate (1,;81)1' wherei € {O, 1,..., |_log1+8(|E|wmaX(b + 1))J}. There

. . . N _ (1+¢)! N . (1+¢)! N _ (1+e)i*! .
is a feasible 7 s.t. (1—¢)OPT" < -5~ < OPT" since *;+ < OPT" < *=—— holds for some i.

Note that this enumeration scheme also holds for arbitrary F if we have a non-zero
lowerbound on OPT".

Conjecture 1.6 Let (C,F) be the optimal solution to connectivity interdiction. The optimum
cut C can be computed in polynomial time. In other words, connectivity interdiction is almost
as easy as knapsack.

2 Connections

For unit costs, connectivity interdiction with budget b = k—1 is the same problem as finding
the minimum weighted edge set whose removal breaks k-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of [2] C
authors of [1].

How to derive normalized min cut for connectivity interdiction?

max Z

s.t. Zyec(e) <B (budget for F)
er >1 VT (x forms a cut)

Z min(0, x, — y, )w(e) > z

Y., x, €{0,1} Ve

we can assume that y, < x,.

min > (x,—y,)w(e)

S.t. er =1 VT (x forms a cut)
eeT
Z)’ec(e) <B (budget for F)
Xe 2 Ye Ve (FcC)

Y., X, €1{0,1} Ve

Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new x is x — y) gives us the following,



min Z x,w(e)

s.t. er +y,>1 VT (x forms a cut)

ecT

>yc(e)<B  (budget for F)

Y., x, €{0,1} Ve

Note that now this is almost a positive covering LP. Let L(A) = min{w(C \ F) — A(b —
c(F))|Vcut C VF C C} Consider the Lagrangian dual,

nll>ag<L(7L) = ?Eg(min {w(C\ F)—A(b—c(F)),Vcut C VF C C}

At this point, it becomes clear how the normalized min-cut is implicated in [2]. The
optimum of normalized min-cut is exactly the value of A when L(A) is O.

3 Random Stuff

3.1 remove box constraints

Given a positive covering LP,
LP1 = min Zw(e)xe
e

st >oclex, =k VT

ecT
c(e)=x,>20 Ve,

we want to remove constraints c(e) > x,. Consider the following LP,
LP2 = min Z w(e)x,
e

st > c(ex, >k VT
ecT
> cle)x,>k—c(f) VTVferT
ecT\f
x,>0 Ve,

e —

These two LPs have the same optimum. One can see that any feasible solution to LP1
is feasible in LP2. Thus OPT(LP1) > OPT(LP2). Next we show that any x, in the optimum
solution to LP2 is always in [0, c(e)]. Let x* be the optimum and suppose that c(f) < x; € x*.
Consider all constraints ZEGTV c(e)x, = k—c(f)on T > f. For any such constraint, we
have ZEGT c(e)x, > k since we assume x; > c(f), which means we can decrease x, without
violating any constraint. Thus it contradicts the assumption that x* is optimal. Then we
can add redundant constraints x, < c(e) Ve to LP2 and see that LP1 and LP2 have the same
optimum.



This applies to [1] but cannot get an improvement on their algorithm.(MWU does not
care the number of constraints.) So does this trick apply to connectivity interdiction?

min Deecvi) W(E)X,
cut C,feC k—c(f)
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