
1 “Cut-free” Proof
Problem 1 (b-free knapsack) Consider a set of elements E and two weights w : E→ Z+ and
c : E→ Z+ and a budget b ∈ Z+. Given a feasible set F ⊆ 2E, find minX∈F,F⊆E w(X \ F) such that
c(F)≤ b.

Always remember that F is usually not explicitly given.
Problem 2 (Normalized knapsack) Given the same input as Problem 1, find min

X∈F,F⊆E

w(X\F)
B−c(F)

such that c(F)≤ b.

In [4] the normalized min-cut problem use B = b+ 1. Here we use any integer B > b and
see how their method works.

Denote by τ the optimum of Problem 2. Define a new weight wτ : E→ R,

wτ(e) =

¨

w(e) if w(e)< τ · c(e) (light elem)
τ · c(e) otherwise (heavy elem)

Lemma 1.1 Let (X N , F N ) be the optimal solution to Problem 2. Every element in F N is heavy.

The proof is exactly the same as [4, Lemma 1].
The following two lemmas show (a general version of) that the optimal cut CN to

normalized min-cut is exactly the minimum cut under weights wτ.
Lemma 1.2 For any X ∈ F, wτ(X )≥ τB.

Lemma 1.3 X N ∈ arg min
X∈F

wτ(X ).

Proof:

wτ(X
N )≤ w(X N \ F N ) +wτ(F

N )
= τ · (B − c(F N )) +τ · c(F N )
= τB

Thus by Lemma 1.2, X N gets the minimum. □

Now we show the counter part of [4, Theorem 5], which states the optimal solution to
Problem 1 is a α-approximate solution to minF∈F wτ(F).
Lemma 1.4 (Lemma 4 in [4]) Let (X ∗, F ∗) be the optimal solution to Problem 1. X ∗ is either
an α-approximate solution to minX∈F wτ(X ) for some α > 1, or w(X ∗ \ F ∗)≥ τ(αB − b).

Then following the argument of Corollary 1 in [4], assume that X ∗ is not an α-approximate
solution to minX∈F wτ(X ) for some α > 1. We have

w(CN \ F N )
w(C∗ \ F ∗)

≤
τ(B − c(F N ))
τ(αB − b)

≤
B

αB − b
,

where the second inequality uses Lemma 1.4. One can see that if α > 2, w(CN\F N )
w(C∗\F∗) ≤

B
αB−b < 1

which implies (C∗, F ∗) is not optimal. Thus for α > 2, X ∗ must be a 2-approximate solution
to minX∈F wτ(X ).

Finally we get a knapsack version of Theorem 4:
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Theorem 1.5 (Theorem 4 in [4]) Let X min be the optimal solution to minX∈F wτ(X ). The
optimal set X ∗ in Problem 1 is a 2-approximation to X min.

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time alg for finding all 2-approximations to minX∈F wτ(X ).
FPTAS for Problem 2 in [4] (The name “FPTAS” here is not precise since we do not have
a approximation scheme but an enumeration algorithm. But I will use this term anyway.)
In their settings, F is the collection of all cuts in some graph. Let OPTN be the optimum of
Problem 2. We can assume that there is no X ∈ F s.t. c(X ) ≤ b since this is polynomially
detectable (through min-cut on c(·)) and the optimum is 0. Thus we have 1

b+1 ≤ OPTN ≤
|E|·maxe w(e). Then we enumerate (1+ϵ)

i

b+1 where i ∈
�

0, 1, . . . ,
�

log1+ϵ(|E|wmax(b+ 1))
�	

. There
is a feasible i s.t. (1− ϵ)OPTN ≤ (1+ϵ)i

b+1 ≤ OPTN since (1+ϵ)
i

b+1 ≤ OPTN ≤ (1+ϵ)i+1

b+1 holds for some i.
Note that this enumeration scheme also holds for arbitrary F if we have a non-zero

lowerbound on OPTN .
Conjecture 1.6 Let (C , F) be the optimal solution to connectivity interdiction. The optimum
cut C can be computed in polynomial time. In other words, connectivity interdiction is almost
as easy as knapsack.

2 Connections
For unit costs, connectivity interdiction with budget b = k−1 is the same problem as finding
the minimum weighted edge set whose removal breaks k-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of [4] ⊆
authors of [1].

How to derive normalized min cut for connectivity interdiction?

max z

s.t.
∑

e

yec(e)≤ B (budget for F)
∑

e∈T

xe ≥ 1 ∀T (x is a cut)
∑

e

min(0, xe − ye)w(e)≥ z

ye, xe ∈ {0, 1} ∀e

we can assume that ye ≤ xe.

min
∑

e

(xe − ye)w(e)

s.t.
∑

e∈T

xe ≥ 1 ∀T (x is a cut)
∑

e

yec(e)≤ B (budget for F)

xe ≥ ye ∀e (F ⊆ C)
ye, xe ∈ {0, 1} ∀e
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Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new x is x − y) gives us the following,

min
∑

e

xew(e)

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T (x + y is a cut)
∑

e

yec(e)≤ B (budget for F)

ye, xe ∈ {0, 1} ∀e

(1)

Note that now this is almost a positive covering LP. Let L(λ) = min{w(C \ F) − λ(b −
c(F))|∀cut C ∀F ⊆ C}. Consider the Lagrangian dual,

max
λ≥0

L(λ) =max
λ≥0

min {w(C \ F)−λ(b− c(F))|∀cut C ∀F ⊆ C}

We have shown that the budget B in normalized min-cut does not really matter as long
as B > b. Note that L(λ) and the normalized min-cut look similar to the principal sequence
of partitions of a graph and the graph strength problem.

2.1 graph strength
Given a graph G = (V, E) and a cost function c : V → Z+, the strength σ(G) is defined as
σ(G) =minΠ

c(δ(Π))
|Π|−1 , where Π is any partition of V , |Π| is the number of parts in the partition

and δ(Π) is the set of edges between parts. Note that an alternative formulation of strength
(using graphic matroid rank) is σ(G) = minF⊆E

|E−F |
r(E)−r(F) , which in general is the fractional

optimum of matroid base packing.
The principal sequence of partitions of G is a piecewise linear concave curve L(λ) =

minΠ c(δ(Π))−λ|Π|. (L(λ) =minF∈E c(E\F)−λ(r(E)−r(F)+1)) Cunningham used principal
partition to computed graph strength [3]. There is a list of good properties mentioned
in [2, Section 6](implicated stated in [3]).

1. We can assume G is connected and deal with the smallest strength component. One
can see this by fractional base packing on the direct sum of matroids. Note that on
disconnected graphs we should use the edge set definition instead of partitions.

2. L(λ) is piecewise linear concave since it is the lower envelope of some line arrangement.

3. For each line segment on L(λ) there is a corresponding partition Π. If λ∗ is a breakpoint
on L(λ), then there are two optimal solution (say partitions P1 and P2, assume |P1| ≤
|P2|) to minΠ c(δ(Π))−λ∗|Π|. Then P2 is a refinement of P1.

Proof (sketch): Suppose that P2 is not a refinement of P1. We claim that the meet
of P1 and P2 achieves a objective value at least no larger than P1 or P2 does. The
correspondence between graphic matroid rank function and partitions of V gives us a
reformulation L(λ∗) =minF⊆E c(E−F)−λ∗(r(E)− r(F)+1). Here F is the set of edges in
each part of Π. Let g(F) = c(E− F)+λ∗r(F)−λ∗n. Then the claim is equivalent to the
fact that for two optimal solutions F1, F2 to L(λ∗), g(F1∩F2)≤ g(F1) = g(F2)≤ g(F1∪F2),
which can be seen by the submodularity of g. □
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The number of breakpoints on L(λ) is at most n− 1.

4. Let λ∗ be a breakpoint on L(λ) induced by edge set F . The next breakpoint is induced
by the edge set F ′ ⊆ F and F ′ is the solution to strength problem on the smallest
strength component of F . λ∗ is the strength of the smallest strength component in F .
These claims can be seen by the following arguments. From the previous bullet we
have min∆F c(E − F +∆F)−λ∗(r(E)− r(F −∆F) + 1) = L(λ∗). Consider the largest λ∗
which allows ∆F = ; to be an optimal solution. Such λ∗ would be the next breakpoint.
For any ∆F , c(E− F +∆F)−λ∗(r(E)− r(F −∆F)+1)≥ c(E− F)−λ∗(r(E)− r(F)+1).
Thus we have λ∗ ≤ c(∆F)

r(F)−r(F−∆F) .

5. Consider λ ∈ [0,ϵ] for some small enough ϵ. The Lagrangian dual minF c(E \ F) −
λ(r(E)− r(F)+1) gets the optimum at F = E. That is c(E\F ′)−λ(r(E)− r(F ′)+1)> −λ
for all F ′ ⊊ E. We are interested in the upperbound ϵ of λ such that the optimal F is
a proper subset of E when λ > ϵ. Therefore, the upperbound is ϵ = minF⊊E c(E\F)

r(E)−r(F) ,
which is exactly the strength.

2.2 principal sequence of partitions for cut interdiction
Now we focus on L(λ) =min{w(C \F)−λ(b−c(F))|∀cut C ∀F ⊆ C}. We can still assume that
G is connected and see that L(λ) is pwl concave (1 and 2 still hold). Let λ∗ be a breakpoint
on L. Suppose that there are two optimal solutions (C1, F1) and (C2, F2) at λ∗. For fixed C
(C1 = C2), the same argument for principal partition still works. However, the difficult part
is that C might not be the same. So it’s unlikely that 3 and 4 hold. For cut interdiction
problem, 5 shows connections between normalized mincut and the original interdiction
problem. Recall that we observe the denominator in normalized min-cut can be relaxed (that
is, we can use w(C\F)

B−c(F) for any B > b, instead of restricting to B = b+ 1) and the analysis still
works. Now following the previous argument for 5, we assume λ ∈ [0,ϵ] for small enough
positive ϵ. For any C , we have F = C since w(C \ F) is dominating. For the remaining term
−λ(b− c(F)) we are selecting a cut F with smallest cose with respect to c. Note that we can
assume that any cut in G has larger cost than b since otherwise the optimum is simply 0.
Let B be the minimum cost of cuts in G. We have −λ(b− B)≤ w(C \ F)−λ(b− c(F)) for any
cut C and F ⊊ C . Thus the upperbound is ϵ =min w(C\F)

B−c(F) .

It remains to show that the optimal solution at ϵ guarantees c(F)≤ b? or maybe we don’t
need this for normalized mincut. I think normalized min-cut should not require c(F)≤ b.
Further checks are needed. What we can guarantee is that c(F)≤ B.

2.3 integrality gap
I guess the 2-approximate min-cut enumeration algorithm implies an integrality gap of 2 for
cut interdiction problem.

First consider the dual of linear relaxation of Equation 1.
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max
∑

T

zT − bλ

s.t.
∑

T∋e

zT ≤ w(e) ∀e ∈ E

∑

T∋e

zT ≤ c(e)λ ∀e ∈ E

zT ,λ≥ 0

(2)

We want to prove something like tree packing theorem for Equation 2.

Conjecture 2.1 The optimum of Equation 2 is min
¦

w(C\F)
B−c(F) |∀cut C , c(F)≤ b

©

, where B is the
cost of mincut in G and b is the budget.

Conjecture 2.2 Equation 1 has an integrality gap of 2.

3 Random Stuff
3.1 remove box constraints
Given a positive covering LP,

LP1=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

c(e)≥ xe ≥ 0 ∀e,

we want to remove constraints c(e)≥ xe. Consider the following LP,

LP2=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

∑

e∈T\ f

c(e)xe ≥ k− c( f ) ∀T ∀ f ∈ T

xe ≥ 0 ∀e,

These two LPs have the same optimum. Any feasible solution to LP1 is feasible in
LP2. Thus OPT(LP1) ≥ OPT(LP2). Next we show that any xe in the optimum solution
to LP2 is always in [0, c(e)]. Let x∗ be the optimum and suppose that c( f ) < x f ∈ x∗.
Consider all constraints

∑

e∈T\ f c(e)xe ≥ k − c( f ) on T ∋ f . For any such constraint, we
have
∑

e∈T c(e)xe > k since we assume x f > c( f ), which means we can decrease x f without
violating any constraint. Thus it contradicts the assumption that x∗ is optimal. Then we
can add redundant constraints xe ≤ c(e) ∀e to LP2 and see that LP1 and LP2 have the same
optimum.
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This applies to [1] but cannot get an improvement on their algorithm.(MWU does not
care the number of constraints.) So does this trick apply to connectivity interdiction?

min
cut C, f ∈C

∑

e∈C\{ f }w(e)xe

k− c( f )
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