1 “Cut-free” Proof

Problem 1 (b-free knapsack) Consider a set of elements E and two weights w : E — Z_ and
¢:E— Z, and a budget b € Z,. Given a feasible set F C 2%, find miny g .y w(X \ F) such that
c(F)<b.

Always remember that F is usually not explicitly given.

w(X\F)
B—c(F)

Problem 2 (Normalized knapsack) Given the same input as Problem 1, find . r;annC .
e E —_
such that ¢(F) < b.

In [4] the normalized min-cut problem use B = b + 1. Here we use any integer B > b and
see how their method works.
Denote by 7 the optimum of Problem 2. Define a new weight w_ : E — R,

© w(e) if w(e) < 7 -c(e) (light elem)

w_(e) =

’ 7-c(e) otherwise (heavy elem)

Lemma 1.1 Let (XV,FN) be the optimal solution to Problem 2. Every element in FN is heavy.

The proof is exactly the same as [4, Lemma 1].
The following two lemmas show (a general version of) that the optimal cut CV to
normalized min-cut is exactly the minimum cut under weights w_.

Lemma 1.2 Forany X € ¥, w_(X) = 7B.

Lemma 1.3 X" € argminw_(X).
XeTF

Proof:
w. (XN <wXN\ F¥)+w_(FY)
=7-B—c(FM)+ 1 c(FV)
=1B
Thus by Lemma 1.2, XV gets the minimum. |

Now we show the counter part of [4, Theorem 5], which states the optimal solution to
Problem 1 is a a-approximate solution to ming.q w.(F).

Lemma 1.4 (Lemma 4 in [4]) Let (X*, F*) be the optimal solution to Problem 1. X* is either
an a-approximate solution to miny .y w.(X) for some a > 1, or w(X*\ F*) > 7(aB —b).

Then following the argument of Corollary 1 in [4], assume that X* is not an a-approximate
solution to miny.sw._(X) for some a > 1. We have
w(CN \ FN) < 7(B—c(FV)) __B
w(C*\F*) = t(aB—b) ~ aB-—b’

. . . N N
where the second inequality uses Lemma 1.4. One can see that if a > 2, ”fv((cctg)) <Z2-<1

which implies (C*, F*) is not optimal. Thus for a > 2, X* must be a 2-approximate solution
to miny.sw.(X).
Finally we get a knapsack version of Theorem 4:
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Theorem 1.5 (Theorem 4 in [4]) Let X™" be the optimal solution to miny.sw.(X). The
optimal set X* in Problem 1 is a 2-approximation to X™®,

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time alg for finding all 2-approximations to miny s w . (X).

FPTAS for Problem 2 in [4] (The name “FPTAS” here is not precise since we do not have
a approximation scheme but an enumeration algorithm. But I will use this term anyway:.)
In their settings, F is the collection of all cuts in some graph. Let OPTY be the optimum of
Problem 2. We can assume that there is no X € F s.t. ¢(X) < b since this is polynomially
detectable (through min-cut on c(-)) and the optimum is 0. Thus we have ﬁ < OPTN <

|E|-max, w(e). Then we enumerate (11:;1)1- wherei € {0, 1,..., |_log1+8(|E|wmaX(b + 1))J}. There

: : . N o (1+e) N o (1+e)’ N o (+e)™! .
is a feasible 7 s.t. (1—¢)OPT" < -5~ < OPT" since *;+ < OPT" < *=—— holds for some i.

Note that this enumeration scheme also holds for arbitrary F if we have a non-zero
lowerbound on OPT".

Conjecture 1.6 Let (C,F) be the optimal solution to connectivity interdiction. The optimum
cut C can be computed in polynomial time. In other words, connectivity interdiction is almost
as easy as knapsack.

2 Connections

For unit costs, connectivity interdiction with budget b = k—1 is the same problem as finding
the minimum weighted edge set whose removal breaks k-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of [4] C
authors of [1].

How to derive normalized min cut for connectivity interdiction?

max Z

s.t. Zyec(e) <B (budget for F)

er >1 VT (x forms a cut)

eeT

Z min(0, x, —y, w(e) = 2

Y., X, €{0,1} Ve
we can assume that y, < x,.

min > (x,—y,)w(e)

s.L. er =21 VT (x forms a cut)
eeT
Zyec(e) <B (budget for F)
XeZ Ve Ve (FCSQ)

Y., X, €{0,1} Ve



Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new x is x — y) gives us the following,

min Z x,w(e)

s.t. er +y.>1 VT (x forms a cut)

eeT

Z}’ec(e) <B (budget for F)

Y., X, €{0,1} Ve
Note that now this is almost a positive covering LP. Let L(A) = min{w(C \ F) — A(b —
c(F))|Vcut C VF C C}. Consider the Lagrangian dual,
max L(A) = maxmin{w(C \ F) — A(b—c(F)),VYcut C YF C C}
A>0 A>0
We have shown that the budget B in normalized min-cut does not really matter as long
as B > b. Note that L(A) and the normalized min-cut look similar to the principal sequence
of partitions of a graph and the graph strength problem.

2.1 graph strength

Assume that the graph G is connected (otherwise add dummy edges). Given a graph
G = (V,E) and a cost function ¢ : V — Z,, the strength o(G) is defined as 0(G) = miny Cl(gl(fl)),
where I1 is any partition of V, |I1| is the number of parts in the partition and &(IT) is the set of
edges between parts. Note that an alternative formulation of strength (using graphic matroid

'E;f('F), which in general is the fractional optimum of matroid base

rank) is 0(G) = mingcg -
packing.

The principal sequence of partitions of G is a piecewise linear concave curve L(A) =
ming c¢(6(IT)) — A|TI|. Cunningham used principal partition to computed graph strength [3].

There is a list of good properties mentioned in [2, Section 6].

e L(A)is piecewise linear concave since it is the lower envelope of some line arrangement.

* Consider two adjacent breakpoints on L...

(there is a +1 difference between principal partition and graph strength... but we dont
care those cA terms since the difficult part is minimize L(A) for fixed 1)

3 Random Stuff

3.1 remove box constraints

Given a positive covering LP,
LP1 =min Zw(e)xe
s.t. Zc(e)xe >k VT
ecT

c(e)=x,=0 Ve,
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we want to remove constraints c(e) > x,. Consider the following LP,
LP2 = min Z w(e)x,
e

s.t. Zc(e)xe >k VT
ecT
Z cle)x,>2k—c(f) VTVfeT
ecT\f
x,=20 Ve,

These two LPs have the same optimum. One can see that any feasible solution to LP1
is feasible in LP2. Thus OPT(LP1) > OPT(LP2). Next we show that any x, in the optimum
solution to LP2 is always in [0, c(e)]. Let x* be the optimum and suppose that c(f) < x; € x*.
Consider all constraints ZeeT\f c(e)x, = k—c(f)on T > f. For any such constraint, we
have ZEET c(e)x, > k since we assume x; > c(f), which means we can decrease x, without
violating any constraint. Thus it contradicts the assumption that x* is optimal. Then we
can add redundant constraints x, < c(e) Ve to LP2 and see that LP1 and LP2 have the same
optimum.

This applies to [1] but cannot get an improvement on their algorithm.(MWU does not
care the number of constraints.) So does this trick apply to connectivity interdiction?

min Deccriy WEX,
cut C,feC k—c(f)
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