
1 “Cut-free” Proof
Problem 1 (b-free knapsack) Consider a set of elements E and two weights w : E→ Z+ and
c : E→ Z+ and a budget b ∈ Z+. Given a feasible set F ⊆ 2E, find minX∈F,F⊆E w(X \ F) such that
c(F)≤ b.

Always remember that F is usually not explicitly given.
Problem 2 (Normalized knapsack) Given the same input as Problem 1, find min

X∈F,F⊆E

w(X\F)
B−c(F)

such that c(F)≤ b.

In [4] the normalized min-cut problem use B = b+ 1. Here we use any integer B > b and
see how their method works.

Denote by τ the optimum of Problem 2. Define a new weight wτ : E→ R,

wτ(e) =

¨

w(e) if w(e)< τ · c(e) (light elem)
τ · c(e) otherwise (heavy elem)

Lemma 1.1 Let (X N , F N ) be the optimal solution to Problem 2. Every element in F N is heavy.

The proof is exactly the same as [4, Lemma 1].
The following two lemmas show (a general version of) that the optimal cut CN to

normalized min-cut is exactly the minimum cut under weights wτ.
Lemma 1.2 For any X ∈ F, wτ(X )≥ τB.

Lemma 1.3 X N ∈ arg min
X∈F

wτ(X ).

Proof:

wτ(X
N )≤ w(X N \ F N ) +wτ(F

N )
= τ · (B − c(F N )) +τ · c(F N )
= τB

Thus by Lemma 1.2, X N gets the minimum. □

Now we show the counter part of [4, Theorem 5], which states the optimal solution to
Problem 1 is a α-approximate solution to minF∈F wτ(F).
Lemma 1.4 (Lemma 4 in [4]) Let (X ∗, F ∗) be the optimal solution to Problem 1. X ∗ is either
an α-approximate solution to minX∈F wτ(X ) for some α > 1, or w(X ∗ \ F ∗)≥ τ(αB − b).

Then following the argument of Corollary 1 in [4], assume that X ∗ is not an α-approximate
solution to minX∈F wτ(X ) for some α > 1. We have

w(CN \ F N )
w(C∗ \ F ∗)

≤
τ(B − c(F N ))
τ(αB − b)

≤
B

αB − b
,

where the second inequality uses Lemma 1.4. One can see that if α > 2, w(CN\F N )
w(C∗\F∗) ≤

B
αB−b < 1

which implies (C∗, F ∗) is not optimal. Thus for α > 2, X ∗ must be a 2-approximate solution
to minX∈F wτ(X ).

Finally we get a knapsack version of Theorem 4:
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Theorem 1.5 (Theorem 4 in [4]) Let X min be the optimal solution to minX∈F wτ(X ). The
optimal set X ∗ in Problem 1 is a 2-approximation to X min.

Thus to obtain a FPTAS for Problem 1, one need to design a FPTAS for Problem 2 and a
polynomial time alg for finding all 2-approximations to minX∈F wτ(X ).
FPTAS for Problem 2 in [4] (The name “FPTAS” here is not precise since we do not have
a approximation scheme but an enumeration algorithm. But I will use this term anyway.)
In their settings, F is the collection of all cuts in some graph. Let OPTN be the optimum of
Problem 2. We can assume that there is no X ∈ F s.t. c(X ) ≤ b since this is polynomially
detectable (through min-cut on c(·)) and the optimum is 0. Thus we have 1

b+1 ≤ OPTN ≤
|E|·maxe w(e). Then we enumerate (1+ϵ)ib+1 where i ∈

�

0, 1, . . . ,
�

log1+ϵ(|E|wmax(b+ 1))
�	

. There
is a feasible i s.t. (1− ϵ)OPTN ≤ (1+ϵ)i

b+1 ≤ OPTN since (1+ϵ)ib+1 ≤ OPTN ≤ (1+ϵ)i+1

b+1 holds for some i.
Note that this enumeration scheme also holds for arbitrary F if we have a non-zero

lowerbound on OPTN .
Conjecture 1.6 Let (C , F) be the optimal solution to connectivity interdiction. The optimum
cut C can be computed in polynomial time. In other words, connectivity interdiction is almost
as easy as knapsack.

2 Connections
For unit costs, connectivity interdiction with budget b = k−1 is the same problem as finding
the minimum weighted edge set whose removal breaks k-edge connectivity.

It turns out that Problem 2 is just a necessary ingredient for MWU. Authors of [4] ⊆
authors of [1].

How to derive normalized min cut for connectivity interdiction?

max z

s.t.
∑

e

yec(e)≤ B (budget for F)
∑

e∈T

xe ≥ 1 ∀T (x forms a cut)
∑

e

min(0, xe − ye)w(e)≥ z

ye, xe ∈ {0, 1} ∀e

we can assume that ye ≤ xe.

min
∑

e

(xe − ye)w(e)

s.t.
∑

e∈T

xe ≥ 1 ∀T (x forms a cut)
∑

e

yec(e)≤ B (budget for F)

xe ≥ ye ∀e (F ⊆ C)
ye, xe ∈ {0, 1} ∀e
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Now this LP looks similar to the normalized min-cut problem.
A further reformulation (the new x is x − y) gives us the following,

min
∑

e

xew(e)

s.t.
∑

e∈T

xe + ye ≥ 1 ∀T (x forms a cut)
∑

e

yec(e)≤ B (budget for F)

ye, xe ∈ {0, 1} ∀e

Note that now this is almost a positive covering LP. Let L(λ) = min{w(C \ F) − λ(b −
c(F))|∀cut C ∀F ⊆ C}. Consider the Lagrangian dual,

max
λ≥0

L(λ) =max
λ≥0

min {w(C \ F)−λ(b− c(F)),∀cut C ∀F ⊆ C}

We have shown that the budget B in normalized min-cut does not really matter as long
as B > b. Note that L(λ) and the normalized min-cut look similar to the principal sequence
of partitions of a graph and the graph strength problem.
2.1 graph strength
Assume that the graph G is connected (otherwise add dummy edges). Given a graph
G = (V, E) and a cost function c : V → Z+, the strength σ(G) is defined as σ(G) =minΠ

c(δ(Π))
|Π|−1 ,

where Π is any partition of V , |Π| is the number of parts in the partition and δ(Π) is the set of
edges between parts. Note that an alternative formulation of strength (using graphic matroid
rank) is σ(G) =minF⊆E

|E−F |
r(E)−r(F) , which in general is the fractional optimum of matroid base

packing.
The principal sequence of partitions of G is a piecewise linear concave curve L(λ) =

minΠ c(δ(Π))−λ|Π|. Cunningham used principal partition to computed graph strength [3].
There is a list of good properties mentioned in [2, Section 6].

• L(λ) is piecewise linear concave since it is the lower envelope of some line arrangement.
• Consider two adjacent breakpoints on L...
(there is a ±1 difference between principal partition and graph strength... but we dont

care those cλ terms since the difficult part is minimize L(λ) for fixed λ)

3 Random Stuff
3.1 remove box constraints
Given a positive covering LP,

LP1=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

c(e)≥ xe ≥ 0 ∀e,
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we want to remove constraints c(e)≥ xe. Consider the following LP,

LP2=min
∑

e

w(e)xe

s.t.
∑

e∈T

c(e)xe ≥ k ∀T

∑

e∈T\ f

c(e)xe ≥ k− c( f ) ∀T ∀ f ∈ T

xe ≥ 0 ∀e,

These two LPs have the same optimum. One can see that any feasible solution to LP1
is feasible in LP2. Thus OPT(LP1)≥ OPT(LP2). Next we show that any xe in the optimum
solution to LP2 is always in [0, c(e)]. Let x∗ be the optimum and suppose that c( f )< x f ∈ x∗.
Consider all constraints

∑

e∈T\ f c(e)xe ≥ k − c( f ) on T ∋ f . For any such constraint, we
have
∑

e∈T c(e)xe > k since we assume x f > c( f ), which means we can decrease x f without
violating any constraint. Thus it contradicts the assumption that x∗ is optimal. Then we
can add redundant constraints xe ≤ c(e) ∀e to LP2 and see that LP1 and LP2 have the same
optimum.

This applies to [1] but cannot get an improvement on their algorithm.(MWU does not
care the number of constraints.) So does this trick apply to connectivity interdiction?

min
cut C, f ∈C

∑

e∈C\{ f }w(e)xe

k− c( f )
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