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Research problem What is the best possible approximation rate of linear programming based
approximation algorithms for Sparsest Cut? What about algorithms for planar graphs?

1 Introduction
Sparsest Cut is a fundamental problem in graph algorithms with connections to various cut related
problems.

Problem 1 (Non-Uniform Sparsest Cut) The input is a graph G = (V, E) with edge capacities
c : E→ R+ and a set of vertex pairs {s1, t1}, . . . , {sk, tk} along with demand values D1, . . . , Dk ∈ R+. The
goal is to find a cut δ(S) of G such that c(δ(S))

∑

i:|S∩{si ,ti}|=1 Di
is minimized.

In other words, Non-Uniform Sparsest Cut finds the cut that minimizes its capacity divided
by the sum of demands of the vertex pairs it separates. There are two important varients of Non-
Uniform Sparsest Cut. Note that we always consider unordered pair {si , t i}, i.e., we do not
distinguish {si , t i} and {t i , si}.

Sparsest Cut is the uniform version of Non-Uniform Sparsest Cut. The demand is 1 for every
possible vertex pair {si , t i}. In this case, we can remove from the input the pairs and demands. The
goal becomes to minimize c(δ(S))

|S||V\S| .
Expansion further simplifies the objective of Sparsest Cut to min|S|≤n/2

c(δ(S))
|S| .

These problems are interesting since they are related to central concepts in graph theory and
help to design algorithms for hard problems on graph. One connections is expander graphs. The
importance of expander graphs is thoroughly surveyed in [Hoory et al., 2006]. The optimum of
Expansion is also known as Cheeger constant or conductance of a graph. Sparsest Cut provides
a 2-approximation of Cheeger constant, which is especially important in the context of expander
graphs as it is a way to measure the edge expansion of a graph. Non-Uniform Sparsest Cut is
related to other cut problems such as Multicut and Balanced Separator.

1.1 related works

Sparsest Cut is generally hard. The currently best approximation algorithm has ratio O(
p

log n)
and running time Õ(n2) [Arora et al., 2010]. Prior to this currently optimal result, there is a long
line of research optimizing both the approximation ratio and the complexity, see [Arora et al., 2004,
Leighton and Rao, 1999]
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