first commit
This commit is contained in:
157
main.tex
Normal file
157
main.tex
Normal file
@@ -0,0 +1,157 @@
|
||||
\documentclass[12pt]{article}
|
||||
\usepackage{chao}
|
||||
\title{connectivity interdiction}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
\DeclareMathOperator*{\opt}{OPT}
|
||||
\DeclareMathOperator*{\len}{len}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
\section{``Cut-free'' Proof}
|
||||
\begin{problem}[b-free knapsack]\label{bfreeknap}
|
||||
Consider a set of elements $E$ and two weights $w:E\to \Z_+$ and
|
||||
$c:E\to Z_+$ and a budget $b\in \Z_+$. Given a feasible set $\mathcal
|
||||
F\subset 2^E$, find $\min_{X
|
||||
\in \mathcal F, F\subset E} w(X\setminus F)$ such that $c(F)\leq b$.
|
||||
\end{problem}
|
||||
Always remember that $\mathcal F$ is usually not explicitly given.
|
||||
|
||||
\begin{problem}[Normalized knapsack]\label{nknap}
|
||||
Given the same input as \autoref{bfreeknap}, find $\min \limits_{X
|
||||
\in \mathcal F, F\subset E} \frac{w(X\setminus F)}{b+1-c(F)}$ such that
|
||||
$c(F)\leq b$.
|
||||
\end{problem}
|
||||
|
||||
Denote by $\tau$ the optimum of \autoref{nknap}. Define a new weight
|
||||
$w_\tau:\E\to \R$,
|
||||
|
||||
\[
|
||||
w_\tau(e)=\begin{cases}
|
||||
w(e) & \text{if $w(e)< \tau\cdot c(e)$ (light elem)}\\
|
||||
\tau\cdot c(e) & \text{otherwise (heavy elem)}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
\begin{lemma}
|
||||
Let $(X^N,F^N)$ be the optimal solution to \autoref{nknap}.
|
||||
Every element in $F^N$ is heavy.
|
||||
\end{lemma}
|
||||
proof is exactly the same as lemma 1 in \cite{vygen_fptas_2024}.
|
||||
|
||||
\begin{lemma}\label{lem:lb}
|
||||
For any $X\in \mathcal F$, $w_\tau(X)\ge \tau(1+b)$.
|
||||
\end{lemma}
|
||||
proof is the same.
|
||||
|
||||
\begin{lemma}
|
||||
% $w_\tau (X^N)\le \tau(b+1)$.
|
||||
$X^N\in \arg\min\limits_{X\in\mathcal F} w_\tau(X)$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
\begin{align*}
|
||||
w_\tau (X^N) & \le w(X^N\setminus F^N) + w_\tau(F^N)\\
|
||||
& = \tau \cdot(b+1-c(F^N)) + \tau\cdot c(F^N)\\
|
||||
& = \tau(b+1)
|
||||
\end{align*}
|
||||
Thus by \autoref{lem:lb}, $X^N$ gets the minimum.
|
||||
\end{proof}
|
||||
|
||||
Let $(X^*,F^*)$ be the optimal solution to \autoref{bfreeknap}.
|
||||
|
||||
\begin{lemma}
|
||||
$X^*$ is either an $\alpha$-approximate solution to $\min_{X\in\mathcal F}
|
||||
w_\tau(X)$ for some $\alpha>1$, or $w(X^*\setminus F^*)\geq
|
||||
\tau(\alpha+(\alpha-1)b)$.
|
||||
\end{lemma}
|
||||
The proof is the same.
|
||||
|
||||
In fact, corollary 1 and theorem 5 are also the same as those in
|
||||
\cite{vygen_fptas_2024}. Finally we get a knapsack version of Theorem 4:
|
||||
\begin{theorem}[Theorem 4 in \cite{vygen_fptas_2024}]
|
||||
Let $X^{\min}$ be the optimal solution to $\min_{X\in\mathcal F} w_\tau(X)$.
|
||||
The optimal set $X^*$ in \autoref{bfreeknap} is a
|
||||
2-approximation to $X^{\min}$.
|
||||
\end{theorem}
|
||||
|
||||
Thus to obtain a FPTAS for \autoref{bfreeknap}, one need to design a FPTAS for
|
||||
\autoref{nknap} and a polynomial time alg for finding all 2-approximations to
|
||||
$\min_{X\in\mathcal F} w_\tau(X)$.
|
||||
|
||||
\paragraph{FPTAS for \autoref{nknap} in \cite{vygen_fptas_2024}} (The name
|
||||
``FPTAS'' here is not precise since we do not have a approximation scheme but
|
||||
an enumeration algorithm. But I will use this term anyway.) In their settings,
|
||||
$\mathcal F$ is the collection of all cuts in some graph.
|
||||
Let $\opt^N$ be the optimum of \autoref{nknap}. We can assume that there is no
|
||||
$X\in \mathcal F$ s.t. $c(X)\le b$ since this is polynomially detectable
|
||||
(through min-cut on $c(\cdot)$) and the optimum is 0. Thus we have
|
||||
$\frac{1}{b+1} \le \opt^N \le |E|\cdot \max_e w(e)$. Then we enumerate
|
||||
$\frac{(1+\varepsilon)^i}{b+1}$ where $i\in \set{0,1,\ldots,\floor{\log_{1+
|
||||
\varepsilon}(|E|w_{\max}(b+1))}}$. There is a feasible $i$ s.t. $(1-\varepsilon)
|
||||
\opt^N\le \frac{(1+\varepsilon)^i}{b+1}\leq \opt^N$ since
|
||||
$\frac{(1+\varepsilon)^i}{b+1}\le \opt^N\le \frac{(1+\varepsilon)^{i+1}}{b+1}$
|
||||
holds for some $i$.
|
||||
|
||||
Note that this enumeration scheme also holds for arbitrary $\mathcal F$ if we
|
||||
have a non-zero lowerbound on $\opt^N$.
|
||||
|
||||
\begin{conjecture}
|
||||
Let $(C,F)$ be the optimal solution to connectivity interdiction. The optimum
|
||||
cut $C$ can be computed in polynomial time. In other words, connectivity
|
||||
interdiction is almost as easy as knapsack.
|
||||
\end{conjecture}
|
||||
|
||||
\section{Connections}
|
||||
For unit costs, connectivity interdiction with budget $b=k-1$ is the same
|
||||
problem as finding the minimum weighted edge set whose removal breaks $k$-edge
|
||||
connectivity.
|
||||
|
||||
It turns out that \autoref{nknap} is just a necessary ingredient for MWU.
|
||||
Authors of \cite{vygen_fptas_2024} $\subset$ authors of
|
||||
\cite{chalermsook_approximating_2022}.
|
||||
|
||||
How to derive normalized min cut for connectivity interdiction?
|
||||
|
||||
|
||||
|
||||
\section{Random Stuff}
|
||||
|
||||
\subsection{remove box constraints}
|
||||
Given a positive covering LP,
|
||||
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
LP1=\min& & \sum_e w(e) x_e& & & \\
|
||||
s.t.& & \sum_{e\in T} c(e)x_e&\geq k & &\forall T\\
|
||||
& & c(e)\geq x_e&\geq 0 & &\forall e,
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
we want to remove constraints $c(e)\geq x_e$. Consider the following LP,
|
||||
\begin{equation*}
|
||||
\begin{aligned}
|
||||
LP2=\min& & \sum_e w(e) x_e& & & \\
|
||||
s.t.& & \sum_{e\in T} c(e)x_e&\geq k & &\forall T\\
|
||||
& & \sum_{e\in T\setminus f} c(e)x_e&\geq k - c(f) & &\forall T \;
|
||||
\forall f\in T\\
|
||||
& & x_e&\geq 0 & &\forall e,
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
These two LPs have the same optimum. One can see that any feasible solution to
|
||||
LP1 is feasible in LP2. Thus $\opt(LP1) \geq \opt(LP2)$. Next we show that any
|
||||
$x_e$ in the optimum solution to LP2 is always in $[0,c(e)]$.
|
||||
Let $x^*$ be the optimum and
|
||||
suppose that $c(f)<x_f\in x^*$. Consider all constraints $\sum_{e\in T\setminus f} c(e)
|
||||
x_e\geq k-c(f)$ on $T\ni f$. For any such constraint, we have $\sum_{e\in T} c(e)
|
||||
x_e>k$ since we assume $x_f>c(f)$, which means we can decrease $x_f$ without violating any constraint. Thus it contradicts the assumption that $x^*$ is optimal. Then we can add redundant constraints $x_e\leq c(e) \;\forall e$ to LP2 and see that LP1 and LP2 have the same optimum.
|
||||
|
||||
This applies to \cite{chalermsook_approximating_2022} but cannot get an improvement on their algorithm.(MWU does not care the number of constraints.) So does this trick apply to connectivity interdiction?
|
||||
|
||||
\[
|
||||
\min_{\text{cut C}, f\in C}\frac{\sum_{e\in C\setminus\set{f}}w(e)x_e}{k-c(f)}
|
||||
\]
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{ref}
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user