remove unnecessary constraints
This commit is contained in:
parent
42a889e6ed
commit
b4b4ff7291
8
main.tex
8
main.tex
@ -152,9 +152,13 @@ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x$ fo
|
||||
\end{aligned}
|
||||
\end{equation*}
|
||||
|
||||
Note that now this is almost a positive covering LP. Let $L(\lambda)= \min \{ w(C\setminus F)-\lambda(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C \land c(F)\leq b\}$ Consider the Lagrangian dual,
|
||||
Note that now this is almost a positive covering LP. Let $L(\lambda)= \min \{ w(C\setminus F)-\lambda(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C
|
||||
% \land c(F)\leq b
|
||||
\}$ Consider the Lagrangian dual,
|
||||
\begin{equation*}
|
||||
\max_{\lambda\geq 0} L(\lambda)= \max_{\lambda\geq 0} \min \left\{ w(C\setminus F)-\lambda(b-c(F)), \forall \text{cut $C$}\;\forall F\subset C \land c(F)\leq b\right\}
|
||||
\max_{\lambda\geq 0} L(\lambda)= \max_{\lambda\geq 0} \min \left\{ w(C\setminus F)-\lambda(b-c(F)), \forall \text{cut $C$}\;\forall F\subset C
|
||||
% \land c(F)\leq b
|
||||
\right\}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user