optimal λ
This commit is contained in:
parent
290e0ed4e5
commit
ae0853cee4
2
main.tex
2
main.tex
@ -252,6 +252,8 @@ I believe the previous conjecture is not likely to be true.
|
||||
|
||||
\paragraph{Weight truncation} Assuming we know the optimal $\lambda$ to the LP dual, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$.
|
||||
|
||||
\paragraph{The optimal $\lambda$} Denote by $\lambda^*$ the optimal $\lambda$ that maximizes $L(\lambda)$. From the previous argument on the first segment of $L(\lambda)$ we know that $\lambda^* \geq \min \frac{w(C\setminus F)}{B-c(F)}$. Now assume $\lambda^* > \min_{c(F)\leq b} \frac{w(C\setminus F)}{b-c(F)}$. We have $\min w(C\setminus F)-\lambda^*(b-c(F))<w(C\setminus F)-\min_{c(F)\leq b} \frac{w(C\setminus F)}{b-c(F)}(b-c(F))=0$ since the optimum must be achieved by $F$ such that $0\leq b-c(F)$(the slope). The negative optimum of $L(\lambda)$ contradicts the fact that $L(0)=0$ and $L$ is concave. Hence, the optimal solution $\lambda^*$ is in the range $[\min\frac{w(C\setminus F)}{B-c(F)},\min_{c(F)\leq B}\frac{w(C\setminus F)}{b-c(F)}]$.
|
||||
|
||||
\begin{conjecture}
|
||||
\autoref{lp:cutinterdict} has an integrality gap of 2.
|
||||
\end{conjecture}
|
||||
|
Loading…
x
Reference in New Issue
Block a user