more connections
This commit is contained in:
11
main.tex
11
main.tex
@@ -179,11 +179,16 @@ Consider the Lagrangian dual,
|
||||
We have shown that the budget $B$ in normalized min-cut does not really matter as long as $B>b$. Note that $L(\lambda)$ and the normalized min-cut look similar to the principal sequence of partitions of a graph and the graph strength problem.
|
||||
|
||||
\subsection{graph strength}
|
||||
Given a graph $G=(V,E)$ and a cost function $c:V\to \Z_+$, the strength $\sigma(G)$ is defined as $\sigma(G)=\min_{\Pi}\frac{c(\delta(\Pi))}{|\Pi|-1}$, where $\Pi$ is any partition of $V$, $|\Pi|$ is the number of parts in the partition and $\delta(\Pi)$ is the set of edges between parts.
|
||||
Assume that the graph $G$ is connected (otherwise add dummy edges).
|
||||
Given a graph $G=(V,E)$ and a cost function $c:V\to \Z_+$, the strength $\sigma(G)$ is defined as $\sigma(G)=\min_{\Pi}\frac{c(\delta(\Pi))}{|\Pi|-1}$, where $\Pi$ is any partition of $V$, $|\Pi|$ is the number of parts in the partition and $\delta(\Pi)$ is the set of edges between parts. Note that an alternative formulation of strength (using graphic matroid rank) is $\sigma(G)=\min_{F\subset E} \frac{|E-F|}{r(E)-r(F)}$, which in general is the fractional optimum of matroid base packing.
|
||||
|
||||
The principal sequence of partitions of $G$ is a piecewise linear concave curve $L(\lambda)=\min_\Pi c(\delta(\Pi))-\lambda |\Pi|$.
|
||||
The principal sequence of partitions of $G$ is a piecewise linear concave curve $L(\lambda)=\min_\Pi c(\delta(\Pi))-\lambda |\Pi|$. Cunningham used principal partition to computed graph strength\cite{cunningham_optimal_1985}. There is a list of good properties mentioned in \cite[Section 6]{chekuri_lp_2020}.
|
||||
\begin{itemize}
|
||||
\item $L(\lambda)$ is piecewise linear concave since it is the lower envelope of some line arrangement.
|
||||
\item Consider two adjacent breakpoints on $L$...
|
||||
\end{itemize}
|
||||
|
||||
(there is a $\pm1$ difference...)
|
||||
(there is a $\pm1$ difference between principal partition and graph strength... but we dont care those $c\lambda$ terms since the difficult part is minimize $L(\lambda)$ for fixed $\lambda$)
|
||||
|
||||
|
||||
\section{Random Stuff}
|
||||
|
||||
Reference in New Issue
Block a user