This commit is contained in:
58
main.tex
58
main.tex
@@ -287,6 +287,64 @@ For LP, we assign $x=0$ and $y_e=\frac{1}{n-2}$ for every edge except $e_1$. The
|
|||||||
|
|
||||||
What is the gap if we only relax $\lambda$ in the Lagrangian dual?
|
What is the gap if we only relax $\lambda$ in the Lagrangian dual?
|
||||||
|
|
||||||
|
\section{LP method}
|
||||||
|
Consider the following IP for connectivity interdiction:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
\min& & \sum_{e} x_e w(e) & & \\
|
||||||
|
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T\quad \text{($x+y$ is a cut)}\\
|
||||||
|
& & \sum_{e} y_e c(e) &\leq b & &\text{(budget for $F$)}\\
|
||||||
|
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
||||||
|
& & y_e,x_e&\in\{0,1\} & &\forall e
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
We write its Lagrangian dual.
|
||||||
|
\[
|
||||||
|
\max_{\lambda\geq 0} \min_{\text{cut $C$ and $F\subseteq C$}} w(C-F)-\lambda(b-c(F))
|
||||||
|
\]
|
||||||
|
|
||||||
|
For fixed $\lambda$, we define $L(\lambda)=\min\limits_{\text{cut $C$ and $F\subseteq C$}} w(C)-w(F)+\lambda c(F)$. Note that the Lagrangian dual is $\max_\lambda L(\lambda) - \lambda b$.
|
||||||
|
|
||||||
|
If the optimal $C^*$ of $L(\lambda)$ is known, any edge in $C^*$ with $w(e)\geq c(e)\lambda$ will be added to $F^*$. So now the hard part is to find $C^*$. We reweight edges.
|
||||||
|
|
||||||
|
\[
|
||||||
|
w_\lambda(e)=\begin{cases}
|
||||||
|
w(e) & \text{if $w(e)< \lambda\cdot c(e)$ (light elem)}\\
|
||||||
|
\lambda\cdot c(e) & \text{otherwise (heavy elem)}
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
|
||||||
|
Then clearly edges in $F^*$ are heavy and edges in $C^*-F^*$ are light.
|
||||||
|
|
||||||
|
Now consider the min cut under capacity $w_\lambda$. For any cut $C$ in $G$, its capacity $w_\lambda(C)$ can be write as the sum of heavy elements ($\lambda c(F)$) and light elements ($w(C-F)$) which is at least $L(\lambda)$.
|
||||||
|
On the other hand, $C^*$ is a feasible cut and the capacity of $C^*$ is exactly $L(\lambda)$. Thus $C^*$ is a mincut in the reweighted graph and we can easily find it.
|
||||||
|
|
||||||
|
\subsection{Approximation}
|
||||||
|
|
||||||
|
How is $C^*$ related to the optimal solution to IP?
|
||||||
|
|
||||||
|
% The argument is almost identical to lyft optimization
|
||||||
|
|
||||||
|
One can see that the Lagrangian dual (denoted by LD) is at most the optimum of IP. So we have $\opt(LD) \leq \opt(IP)$.
|
||||||
|
|
||||||
|
We can assume WLOG that the optimal $\lambda^*$ in LD is the intersection of two lines with positive and negative slopes. Then there exists an optimal solution $(\lambda^*, C^{LD},F^{LD})$ to LD such that $c(F^{LD})\leq b$. Then we have
|
||||||
|
\[
|
||||||
|
\opt(LD)+\lambda^* b -\lambda c(F^{LD}) = w(C^{LD}-F^{LD}) \geq \opt(IP),
|
||||||
|
\]
|
||||||
|
since $\opt(IP)$ is the smallest $b$-free min cut.
|
||||||
|
Thus we can approximate the optimum of IP within an additive error if $\lambda^*$ is known.
|
||||||
|
|
||||||
|
We can also recover IPCO alg's 2-approximation.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $L(\lambda^*)=\opt(LD)+\lambda^* b\geq \opt(IP)$
|
||||||
|
\item $L(\lambda^*)-\lambda^* b=LD \leq IP$ and
|
||||||
|
\item $L(\lambda^*)\geq \lambda^* b$ (since $LD \geq 0$)
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Then $\opt(IP)\in [L(\lambda^*),2L(\lambda^*)]$.
|
||||||
|
|
||||||
\bibliographystyle{plain}
|
\bibliographystyle{plain}
|
||||||
\bibliography{ref}
|
\bibliography{ref}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user