From 6f81cd0ecad0f7ae75dfc449fcfadab7b6587934 Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Fri, 18 Apr 2025 15:52:23 +0800 Subject: [PATCH] complete principal seq list --- main.pdf | Bin 250382 -> 251998 bytes main.tex | 12 +++++++----- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/main.pdf b/main.pdf index 1aa3e4a4cf406a858792c9a91fef3ee9016c83c0..1d26b84dbbb7f7b529bcd4170c18e5734abf5d18 100644 GIT binary patch delta 22003 zcmV)IK)k<>qz~S(53uJQmmxy~DSzEu-E$*1a(~xf!MqL2%L%?euIf@1UwNHeT#2u& za#Gp#10{|mYDG#WDa)I`{<;Co3@`*{DDKKtmltV>!AGOf=>By#Fl2T+BeU->NcjKl z<;6e0r_9VKt*w-7c6l>1wwBV)G%+<1a(20zeW?C(PDS-NXQq0YFPJvf;eT$u_fJ3k z=>I>=DXAVGKZWA`db56*FQD0S7n;nmi_p6958F9a)#GlnoKxsw4fRR&fAfW@nw77x zS#KBD&jM+{_un!LW{FE|kJiE8AN&>GqFVZoKGeh;rw7UDZq0f!3hMBk1i zuRH;S6dF=ieJ%`W2vSZx*|+Pts(za@RW)Hbp69aK518-y@!%KEt?hby`>q|@L_=E& zA|YlA1|kt80v0CJ20kh?i)wvS+9+MYTQ>CJQUZ zc|{AmSutCgJc*Ka3>$7`N~s)?K|QW@S}hlL`_lgd9U6&eA|^lzYzqx)RM%Fqud`{j zR|4Ip&8`LroZ#8TING%|UX1Jf7L;Uc=Ze#I?r;e?!?hPBb$?*0ZwqU|gbwteC31G_ zd3D1gL;PP+E{ZQ<746GwdEpa{JR1hsL1bXsATLp+l|fL zzPib7xr)3)<4p?NuDS&Pp-gGxp;6587StdEGy#3J5J*bc5gHh|=^)SnY$peaIovG| z_#^^^!R3AN1%DnI;Zyq`&<%hVhdTgiuxfwsoh<$9CttWe1gniU#=W?9-FiE|1KaFN z0dN@s8sGmwMpexryA8u^xG~NeC)4@iq&=htcCk}}#}< zeZ7Ge)nD>EnS)Z@78+^V@3)j6l&CT70JDnWni{-i<9{qGDR=?uB0ru`MR*7kR5h?U zg~R8lN@1tCQRE1%?oCN?p$#gTYgt@15Q4G=eP3wA5k)grR@#NpEC=P0CBNNof0-|I za2NLLRqI=HkopJjRp7S0-7U9(!xySr2G3&UYyf&U-rdPUZEb2JQDxFvx5jg`{Jod3 zUb_OO0)I5VfC9yjP)ds22KXg@lNAC+Y7Kxa>iP_QLCey=pslw8_Vv#tV8u!^7vN<` z_4TG64@_-spwp=9lHOWSu+uk1EAtg~7t^+=ySO?}cTuB8beDg7hVGI@-9_n$Ym0Bs z(N*wrYW6h2ODU3gS6}m%-7OKL{)S2`lTVLdHP^1HG40T692?M8C@^tiXCuwF%g9|9rX6r!9 zYl2C(T0OS05#KHp?;79y;j{m}Sso6png@muA4Rbt+~o|xt&c<1*0f}5HWLQ$q~@N& z(0_1*9Y)oZ(6rUJ1z4eZ^)CehB(~pvLne0AQ2+=^4M=qM%|q->%wOxarUd0WmZZ5NOs0H2teKo+*7i6H3~6W<0_Zz;u*}>-Cc# zBs6Y*eRh#V|I+y%9TQPl6nH@3f;+k$=zqTn5zpoBu#RJtL1g1P!NUiUa;0edENs);Wgu}w^q}nzSF*hBqLhdk2v9dX*t$)5N zYzMO2j|O6y zXr`7WLh#y{w4aZJ^8)mc<0$X@F@Fs?DF#9VEmEh%xKIN~!KwkWv`<@ff)N{^-0V;T z5d->^zVXb);XaR$w&ro%k$|U@hLHeC%3Q?B*06DBuTtQ4=>y zXms8Vk=b^M&wTOS<;AZTon{gg48NEO*mKO9+4bh)!!KmEf|m#>6qvXdSATVb;e4nC zj}Nn-F8cwyFC+QNfJCw;YD}V(B%mJnGyt(qwx8qXB z$WVVBm>Am00bmi{(754QuWYy#fc<4}z(#ZvR@EkLl5Wt{$PPAWiD|C@nJwWI78C^} zA;mGy@D>4bfO-x-ik@QzRq<^TDqi7xfEX_>s*7L-OC3uQf^(8UaDU!9Sn%Y+NXA8z z!TkWI1b&05Ump5oudmqWxlJk04YhjuL}CI5NQ@9*zJZNtY|DJ$FF2+yqwIpxptpJ$ zwnpl&eIfWxJ2&Kd*s|N;6`#<|Z*r z@AH{cAB|w;?CE#8c7LeyRcy}gU)MfB%Q)yVXf{Ib{js&;4Aw;9nt*Ntmte$Nap@w6 zskKVR=Zw}&s2SI)29MfLaF;i{S`AjWG<$YD`#1nLwAbYx&m`o10XPgoaYeu?wF~)qb?m9=W^gdBYCd)$b)vJ zkEr!-Lc_%JFy|_VI(ovs6H+rKQ-Z#qTq;0p681pSY8?h$2AZ5UY_6M^_1=-Jss}&4 z2BQdA+IjHNI`beJ&uM zH<_J#Vnj`iO546g>Ub&-lsCUp)mG3`?QhBW($0JgkAE&P$-ng6NotytwPwYHG*mq= zsq-4iJ2j<~8p9;nqsFtyr-i%7F_EP#5e4LX4lO5SiI8>QNkr9M#F1k=PhBkeCaP#zh zaPc81iGQNB__L1-WLs|19onoBgFq!uzn zc|I~qhOLgE3+-H4Ks=ht88aFzai9AOnLYp>%i!31K(~M1G*f1ROOf_hL{L2$R@Mgm z>!ev5in#Uy?9tM7V5@BN8md|~9pHuHm$lDiM4^a%$n!kRVLjdQU}2Q?@M93z3_S(| zQGaupFkbx^{0qW1+;x<`-ho9`L+L0S7t@X>7<0CrW6CE< zQwqGK!3dszK0S{Iz{A0kPslzDoF7`NLij)ksm1f#Z2)FcqyVngQt7nWAEc8K@&&EA zuqhoO_XBdZ?Vg;3!Q--hz=$|SEn?aWVlM2|+jlT-j}Om7_3zvWvUeu)vwtthoR=8k zoS?$pct|MzF_-$nh?q|N%xQjrVg|7jY41_CBTJEFE+%>oMQoZP#h{hUuFw(C%ciI# zCAHB5`tFNPSC(??;zL!^nWJXbZCtKvAEWn$59hPS=Vn5Q@Iy zR|=_xGjh(m-Ig!z?OVZ1is@v|kmR2BwJnh_tLp=8OXHN0Q(*HYN zTP!^xe*tc^WoJ!d`mhmEHKzj(!9EZm>21IOsk{z(=Jh7xyu)VxoD~#pn&wdQr19hm zW41d0sm5naF$6Mf_J6geOgXJ7Q)%ZDcAMfAUq#O%Xi|`<2BV8wHX-QRr`j8zAVRT{ z{t%!9KjiA(MX;jlWbpF0xsNsgsCo__jB9i7|NYTVj{`zcxZ4(9`^)^d=;&bqEb%BV z1re!*e4|AY5;~=WMati&?C1eDa@>z^u|~qk8ahrp$0Oz#5r5U(_<*5CDU zVWi+^k!sV5^Il6)BO2kLr+jj z0xvS*J>z(CKTn?I7M6gSw`sG%=L}%{_HzaX1IsO6his)1ys>aTGXDBQ;Z)4TId^4s z+T|B}?a9$SQ-3o}3+RTW=tjrj=9T9v(-Rn|(-Q>nrKeYh2{dKs>k(=>k2Fl6>9JhV z**P>jf>7O^?gBtnAS3LwB}@V8KSu72k+;je*;4LJlP}A?!G1+k9`DzMcVxRbfC)C3cq;~xAM^-JYYGeRfvcB_%;)L;C~uFQV@;`GIzMLq}m8^7wcWu zAuq3{kq`8Ez-l1gLKJ!IF$fUxvsfX){zL@pbUGchNza{QB&H3ZBaKu}f4j z+ps6w`(nzvt_oY*C?Ct(xbGrh6lRGDJ_ov%Q(k<|Y}J)Ewat~t>s1$vE2zO_Vo;d?uh7lslw zwFMDjV=?7(Km6lv9-hG~QIK)2Ya&dZSJM+1Gjo3crT>3eJt~$T&X7stZnXB7v0AHzMXP^(|qvbi%mD5GTVH-yPY!G zEZ4hjKZyxg`TqRRa2hjsnluIvdp8qWHE+Tz&XZS)Ha}2B`*k{g$>0@N#dWxd^=}f? z-Z^NN0jl}V|6L&p03vU;y9$heO%Fb&$tz|xoJR*BZT8kQ6;K+2&j(Jx1f$~#GscOM zb~59VNZNXTHvGUD&6lP70`IJZR{$k&k`b=eL|Z|$(3A5OZ1Dz=7EQM+QI+)zIVHN~ z>B5-abYh5BOyVK~tNBC{Wdn?qiXzGhXhIRIWqQH|%9s_+-2XWgC;#02DoRriKZo7h z_5krG3)v|$7GudZCybgDj^%oR0(U=Urn&4E0oTue{%^Oqazv2Lw%d)ND6}D>ZPTq^ zKMIjBAWbTRh)icfuyDsM-c-1*-KX6+8{9R*zle`Te6+&{K$tK>c`k&yC9GwE(}1o} zyxHNAIPiGm=n=e`wZs76$#$>Ha!FN-a%sZlp`{ya05~z3Mbm)iysQQ!P@zoX2w%<( zQLRaT0i3TFqw=aak(xgXsVY2L6RWblk#`CGx3@RzT(-mVnlT8w#t0>I`CJ+PPt1+Y&gxDpn~qYD&w3T%)T@0@4}>;d)XW`W|` zB4(O5mp9WHQ_Xz2+J*=7wI5uB8QZRNPlC?XK~{0_Vah>@ktz)7W}AoQ`pUnWZ?5it zS3rO*>Pjw~*BeisY=^r|_hWyH7^pVAGa`~k)`EwDo(Awu4)VzMOx{m*_VRU+{erYyPNF?7 zk21I>fB8+t(UL52w9<9pPwZtZJr6E_fAiHI?f8{d8KM~|wH>KW>_07RT6QS>%d$?e zicleIN+E_o5~177W{nVZQ^vyRk!7;o^C4rO8N*$U@<^Ww%j=3vw24f-Fn1A~ugZQs zY|TdeLU%)dUx_8CeSW+X%MFv@Jh1ji!7;hq)VCA-a zZo6E#m{9cU5C*7>CF;&@I~s2&ZV3awCOP8ywllLE2Hj;m96WM&!o&3vJ=)9bKJ0+d z)~jf*{iiLc?}BIzIu=|i3lvQ@Jw@b%u!Fc{BF=?qe)|}95EX(qZ&N^m^X6RmKCoJc z2d+*eLUyt!l7>Fd4%!%*_@9goc6X5Y%#xvGUd5f@8Fsh3b zNiTgCLqtGjB#a?7i>q2qT0OYo0!~87))ol(c~l_aDk|^+lMRj&h^pW!kTE0EEnkgB zNZ|0J4Ng|PtS#o?=-2f;r&U|bb=4L#rAJ5=+kmGSW2VNeu|Kn7j*;$vsv@gpYixgB z#yH3QkV~fk6ALXpU~b(S2WXyQj&X;IJ;qn;@kC9oT6xUp2Ft zKl&#{Dd8=xD?$doMa|!TN>gbRe2^@aCQDHyxO;62h=NO|4r0YD*o?T81g*{^J|alX zc8u@R**E8B|2Z2HI28P710)3>6fVW(>g?TnI$6LwbP}{}Cl7As3fxuF!c023nS6it z_fSMh5rn{g#Oo0kN6@6IW>Wh&o@>f*Jp z6nbL7m=+-T>3)ml4^*frQw;#;@@$s@#tTdoNfxfM%UZ$HyUo(iTHXyFJU*Upc1v{O z`*zNKxsR}9-?snZ~71Y~y8Ij8NnN91dDP2@|e-r9^NSbL<`CBd5%heKe zIBot5VSZBsR?DBNYV^(}R(%38R8|2I^Ql`Lr?9iy;-KMwqB(&ir^K0}_fg?Mmx?}W9mGk6GC!3aAmqWj9RAgs9erVDjfh_rv~rm(oa^NKsZ;9R?2`?@qAT~bb z3s2v?omyRg3AI2839A56OM3182E~asZ_6%$sd)rxs>mM1{`-`zi2Z3T3B`IbCz=Kp z{=1}RHIck^43TZnmqlTRkplL?e%1;<@1ZKfHE&A}d*?W+Sn{)FMm3*`PC`qJlu1^) z2>Q$bEl>zRo&zbi6?&?D2`7a?(`Hv;oE_FA3;^hVgkg^}fVrfuyAj%?SY&n-pyL%w z$(r*b)4)Ge8Z+-$6g)ZS{?dHYFf^WT;sE1Fgn@E=63rTq#XeRt&aG%{)r)sz1D6z_ z4H5N@h^V9oaIyy1?r^8+JuhaFT%WNTBtu3 z67R7aw6A2+q>?#q)@CgPHb%R9!r75#jn~YYsGBujHEZA)8?RK&kyh<7qsE?T)YNIp zQH~fjb&OF1NJgu5oMzC<$Yq&%Hbyz-io^m%dWvUL7tm`vojF=2yyb&c?bM@a-uiVL+1)HT^u= z!=UXE@|R1ks=8t^=d)E(w@szr4$F4IgF_uIImj*r;SJLLscag!{Ha_fVXb*VpDAj8 z+6x&h4wqRQo_0A|?8}=;ir$p*6<&^3omrRrg&#w{S2g{D>oC~PS7GF8z%J>tLZ3qF z<~!Imbb9$IzIV#<&~;=(*O41xCDaW*xYU)aoo|<+DX{fBu%WITC8aFiSEdne)~D~7 z*e93JLE>D;9c}_ol6Vp*nBgRBr^2^?SkU#e-n`|`N1{VMe5^~VRbY>8dfs<$&!6fg z7

^{{-jqP%ck_RGsS5)st5-^8{#d^!pQv28R4?UyuhzJ@oPk<1I4sI&@t)b_Pi^ zBC5F;%iU5c!YoSI<~|7@q^M5HiSnIsyvN_ zeStLxecHE@Hs9T7(>3gZ&k8+kml)8mD#T$xJE(z&$cDZ06BD2tbP1;n&;onJRPE$yJq&6 z5E>`8;~>iV`iQtVSK0%AADQJu;L4bpNgcS263nf4m$uvcRX6S{Frs*y?pnm!xQ|sz zCM`kwz@&Zsvi)VJ>W7$=g0*n%GNfMx5=KqY@N?D8*V{wl`p^&ti|%q0VzN;>OABtg zHqWAS9U(=jtCb|XKP+7{0>!q5L*s6!|40VY3T}G%a3}Pv?_9!vT+k5d3Yr(B3C7@R z-*kmjmplJA%!G*xPt0AI;6IC_%=en3aNZ5!fD4cPq(?kL2JS5=%>??Ye|zj#W<6;n zCV^Q-n`MAMY8)T%@75lr5YP1iP#ghav9#5FtH|2t2Ih-}A8b1RLF{_r%R$zYT8`Ix z_TSxcu;wg1@H2`{wQQ5F1hX+Gc&mw289RntOdosNK3Ku@O&9Vwecp$; zgiShWST-0|(+tb{JkZ>0;kbc_F-h9+onMlS>hnQaG7Nhj6;*vQ%x8t9_rCA$Zrnxd z!o#7QD16N8n*8wJ$4Ni>%UR#D6}6@`@BR9y8%mk)VpO;nH14naug-{Oo^nR6os=-#aD)F*PukAwvTye^yI# z+cprs>sRoQ12`k1coL*KXz9NMRt>mL}0Ot zeSF_8ShR>(^!tE?|Cf`&Z*MryBF?EYCYszvLTjp|iP9{k!tiJ^kEWz5>-h8J63&V& zGBh`gEx2sal&_j{aVb6 zN3Ffc1Qn@{B-Lr={k`ukh`nP|a>Fz`WdLle#~8(-M57u%t!6a&b}9~$e^Ud+PXyJu z+DqZ!^Grb7(uf->xOT|` zsc^1CuBi;<`ZHFH*xQ(Ee_|V3$6S(`-MSq1JoUtbYjUjx8e(7pRz`ahQ~vqje8ede zA@#Weut4S|qbirtq;hPKIVqa5ekg#g87HH=BIX%c#X0y;ZP)AN5CswhWy}FFbuzl^ z>IH5J^0tc;LyCIg4k_{qeJ*OW&~4VZsJ+?uy+9Mcy;v4yuspddf7%&dYsltqz48j< zqA3y#1tUCseh!_6UETfg-c z98O8$7vb-{gHh2W?@Dj8XuMz&i;R?&^{aQ+!K!m%^%VoN4eik`_OUiiBp2k}1y%@h z3_lk!XJod;LMlx@#c2*Uy2|>(9R>~wqFieqxDff!kB19%e{O`~oI77&OE4iGr_8M~uP3F1rTN zE14mGpzF47z3d~V5lE2%u$pcj&UlbH)ne_x{_X%X$|zR=$#@_?pdUz9d;YJ{Z?q@{sxF;TV6=Z6hruf6aFIV}hLk3Z6Rziu@5MFai!U z%5tiDr2K`nD_1MeNS9Sf-lB)pe~&uH<-4MS4GEp@!={CfvCEqDjSJEWMa2!_E02=K zmUSra%vKI`C|}1Sg|d5Pzf~h}EXV;=_sG8Wf)k`xxu&c~6O`1` z@H|$Ae~hl4=di?rGU=+SRgOi~DG$QSZuQ{5cn&XypP{rmQK_Tes|}aUq)~^heAIBfhRHSrDd5^bq z><)1Co9hWw51J^jbL_Wn(I_+mw>U9k$`~gHe_}+E2Y>3KZf!I7q(pA^DmdR@NL+-= zE^WQ_U!PF?u&_bkdlW$V5)o50u77QBgcb$D_TCF$J~T^Am6V*=Ie4JJ&F%0cJR$t! z&a4!?)_csM#|w+2%@}gstYI`(m7kTy^o20H@HwfzlmX!W-cZ_}e#Y|=c7Y4ueK+3q ze`0KA&tm$kqnew5&K6gx@q-TDHU-vqVYhxMI77$_A&1Arazz&KSnRtMjE(AX!YS%M z{nG&6ZXy0Gyt3M^2|OI%m+g0KiM9!YrJf&gNw5rFgV6OP(2OhT$)pbs!2|w3>I___ z3T19&b98cLVQmU!Ze(v_Y6>wiG9WM@gU>&Q&p!c&&p!gU&p!k03lB9p3NK7$ZfA68 zG9WQBHjCX1%olPsNlyVR`c3ckaVrt|=a-XP(h}La|l8&V0Qi@#8%eK2`?f!B8 z`#s<1dA`s0`943RZQgz)dzK&sq6-j|L?u&bz=MHuouEjVgOD6uNWKt%N5o?YNh_!; z%HY9F5|si>$rM#1BS#^`Kw$ym#6Te$*v}OafvF|17jb|og=z+)1<2i^=34|u~&E<=QWRbs46(dnl*t8b z1}_r&8UOprRy-Jiyakc)irs)@`T3gEelE-mL!ih=U}3(Rf)Lh!TIHDStGZ2m+`R+6 zJdOXKJFj*+BTNAcMzE_|>;?>>kP)Ry0aPrq0LQ2R#x#flB*sLWkP!ijwSaID8Uxq@ zq3X(Msldbu;-QQcbQQ1wCf@LB^m~Qg3>ZQ8M}`0Dh#x8xgh2r?3*}-gzizQw@;@;q zSqO{4K?<2dp;9P+6tME3{NeHEso+1c$-zM&2FECXWNK~>EGlQGrz6njw%s^#&k~^(Vfwk|(-RACb1GoKDIDTd*!Njwy zmHjWsdqYlR*_f{QetUGn^{-?f{FeDNMvIV|^SU}l??**{XoI^5KjLfK5Z3>cIN93I zrxhtX+g%K+nzd7plJ&sy_U38*nh}lYCBKLApx&smEe|>_YwD^k=_-na&RVkA<)qG} zb6LR~EZb%69Ykp3cnyJ7T(p@Lnw&ESU^mmLi?IP!A*m&H%U3gct7)X$;+c^#I0uk9a-l6aNm zEfH7cI`=2jjK0X4na)3Q_C)*)p<&CVlRHbS*Ox|^z_GVfBZ)g_l<3VQ@=Y7w=CK0e zA>W0qa8g9A_=BGH_gZNqwncQeA+@tcy@VuLm}-H4IWVN(PKLSKk2Q>;y&-C%S?xLc zRUA+ES{&6c${^JE8qLdm@UY#!`e5UiUb?3fLTO)Qr3SW*57Rj*iAOYnhuKD);>Am| zz3;DgOvSa58*Je&J?=HX2H)w^X)fF6MLgP2Y6U@memImtC%^FwXP9oeDt@p2)~dIdfRrvk;+jBO9l@4zA@UWXgtPCa?I<-Ph5QFLGXg zZrtV|OT460UHMwwf}?NCRWp-jscgL-RQzhGG236-x}zdA*5PIU>`=4r(e+bh-FbJr z7T()rB{kKiO1QBFU!xg@w6}Y?6FGr|cCpn&ID9o3TQ8h9d_GrU*Cr8Nkt5@O+eQ^Wz1i9Z*kIGPt`A z(Y~FM=kuH;(x9;Rrnfpby&0IVkB*bRJ^1D_e``=x-U%V(ni23YcDIexV#a(@SblhC z|34MYj`y82%xgYLI!iC2yL)x?=438?VpO7bY%2G7H8UpA|Irb(0^P<)pHj_w)Jv_k6GWzOU=Lml-)3TeONHj^qNGk%%-Egen{b zSYv4JCLk5>MpQAjP_YNy=mZQ!1?}tULVqHtAmD(ysyc#KPR^JDVrY00(F8*SQNT%e zIt)-p0)})qKpl?I01!t|2yGM`!HWcNcq|QY0p0LKUbQWm<3v{y01#h*$7vYIlp)cL00IcaH;ihAXMi|cJPqp(xMB!Y@IUyetzHOtB4|sZ;fioeyuVkVo5kW5n7~{ zHh`f}FuuHS00F(UfXfH~59u=ikO3K1QzepUPzgY$)2;xnBnt1=HZ?Q=HK>Z@L-{%m zDE1#1La8*6f~R_TLN31J2uN1V1%vgV5-`*sV7T@cO!)y&hX4u&3lczA+J6tQ#y9xi za#|28l<5f)f54Cs=1HdcQb8J(M%fzO-ywAbpysx9(I5r%qGJf(14u{}PlRA9i2b^V z?-h^$0iyVKIs|&+iS&PnwIE`W4-x#K5kQR$nI++%1KpCteUCsLlL>U{zX>#tLMR0f zE%7@6git_N0?44!U7%L}@qY?Y(}_Qtgci7kctiHTnf&*G*kYjGPWqBT;M?xeGz!TB zbim`F4I%zHqOU1GyrDay;2FR3>|Qkr9ajT!sTG2n{$A zK&V4qBh@vo{5um%r%<4oef{5nj{WbqD<1kqfgl6K@(%QpusSy`#eXN>q2-CEG_;vG zK3kr$T5WN6lzEjk6*?TEW>eJWngrVJN~5A{{^=my|kHY5KUVEalxl9didsMIu1bp-Q@T|_}1&OM6f_`7nf3nW@`xgDu z)tw+D#`i^xlR+^R&VOTWM)XA7N_N_X?9A&dzP*HX{P<2E6b_n{6&kC@>$c=_+eMnC zEhEji+9qYo9ek=KS^W91xCa5f4Dwlt4cFT75@`+t^0A?{D;Dy#RXnPjLFaS+n#c-b z3Jct#y`S|+ZRxninG(bu`HR z>Lc;)A|ryzpq>jKoh`Cz_Lzqt_9PI2_T7I;`3dTT=Fmk0^BO1R=@VkVhg?EgCdW8- zOuaR8i@xbC1b>BA^Vw5Kn=%~DoK3) ze5G1RqA-PhTywWz&x^_k!QM}d)3`GOc}rYp!mhB$n`=tcRZ3rwRlM(!SmPk-5Xqn3 zWo@6AJILz0$2POO)8lacgwx#|Hc#5&s|(LxzW)7rsefU`u{2x#G41|CJ&~&?iqlk7 ztg9%^Qzq8sFX@G_*a({50<&id?6I$Z`9^EM#mu=)U8xZB$?%(-*#i~T$#dyVO6zqq z)`JuG`{#8JySblZR*gmS+y&Ej#=U`iQ@U+@>RwBI@o)rIQTcrYc>s(2Kc!>t5U?sXScU z@z2~t67$|(nR{@0wOv%0wc$3+FJqK z$us zaI~3rIH#2@4|vPvG{OSio+tah`M9ELPa8XNT6aBM`on6eK}QPx0gE^#GtRNE?6t`_ zv9s#WLYQ;rJ>$R~m`iM-nm$&><$1Uw%uqx}egoFRR~T({utu6MJJafX?D59z1`!V{ z*MGlsW^(O3y)?=vMk|X^$DU;544Mt5ssymS4Kk#(->!0ql8%Z}ycGs5tqwv4+E9u^>%^j_6*!Og?1 z`8TQynYY*>&H=Z4y-KcNmji_x4*pQ=rsxwyC1lQH_dejrQkCCgV^hl~hiA|P& z@i}6a*G>nZ&ZRd6Ebfd=J&U7)!GAfPrN3M)r$a6^*&!Vv6!H99<{Y!`M`VMtW6;G1 zhPZ7a0MQvVs8ds#m6_S>5?IA$bk#vRPE=uKk^_7Bh&XQ1`r2}7+VXi9%{^vW3j5da zQH_6P5(l_<@?T!e>cEAGr*^L$`zT?q%(*>T!A;UqO&OMwy;e#-$~9w-Jb!t;k*`&2 zl#`KexRNRvSinO|>OX@u`&HLR*3?gtt3!0naWi~jZ1AIwS=KIO1H<*3 zUW&rf0|U>B=c8c_Cdrl!OKy1u<;T7R%@2DnWL7K|hX!8H>7`uLu4kX&h@pGOZtF}L z4Fky6Um!;m4nApmo4WTmQ-3%oQ#O$@T`kZhH~Gqh^H5%AuzCLhkK~omJ+j^+AFibm zqAS%hnB$}e!3QGSH$#u7@chacjlH5?R>85<9q5=@*pN#bl0oMt2KjJ^{37!Pw;p_m zQu>DCSl4}TYW99%rhvEq0w#-7b?1bFEKH;3_n9}v)q^OZ)~15)XMZ0gt5i&R47cZ) zdD@lx_}i6)KR%QZQ-|I*!F?1{*2>y9daAu1kYlcUl?)5^R}PS#&oxF<%)IyfnqDDN zG{|4vzg-PZ@E3N#$i)M*vm#cdWxwI)TTn^@VIpORhxVM|JbT%j^cj4-qm1n`S!8{d zCM-R4NW-V2JXR0XFMploy0D|$drwB7YSI!~-ZIMiz(;j6a;hpacDVP1{|cjnmlDJS zOL&H^HyLUfmlVocU_GyU|7gU?uPvVyWEBPM$Tt4Nmf=_Nvfc0C!#G=3D}Pb@;uncsdn773*u@-w z{_*zBKtbV*S$|j-$t6eQ1^9jscZX5#hKnh-SoVdHLAjCha#dmcpoo!tw&N`&c9l@q z${bw*KDuYyl7Wx}5(5`He3zvkP#3A7n;zb48hc^T zve`)}Lf8E-wU3-Vg~Qdq8p7w<_V z*U{D~7f(h-)!QduG%5zIUhW+3=_RU@9KB70b@g!5q<@_C%uc$N`av~jXfMvn>cnj0 zb&}4@uPaFp;K{Wj$sMPpW4-7HTLd-CF8fR?JnxtoNPE8 z=Uk?5T$?I3dm!!A$h(Qyi;)dBZ|o46V$%ch9{Q=yi!=OLQ7l@1r%DK~59PY8``&!R z@kA7UdViq$Y4Y2^@wSJPqlcVN8$J4s)^3pydvaa)etpS7@yu1%r`i7XuRmHbI}Fp> zkZ;Cl>*f#oZJWm*DmR9kM$Ajb%%62Q{!qHX!*8Qq-uNizrLMyhqWhgO+6m9u`ia_o zuj2UwnzCnaI_uOjZ)J~SPLDav#YAyl674Kqr+*R><&#dJ#-><;t$`FThg!cTKh5wW zQC_A+kt??t7tvtf4Wk6Ml)3EAVd+1FU5tp)_a1GapG*gc3mQDn{d9|+#s{L-oWj$3 zbY}-$1tmQtOPdclL@A#~h4&l@*xRpmrr#hTfNQsd^#V-z&Q)Zd07L)ecBz)jK616P z7JmmEjXp3Ogy%^CRwMT&JH^fF+Vr9V=9s}L4mfoCtXw6`OD3wj&7~#ui*(|FG~U(w z=_U=!VPeTPD({0Iusj1dCpF^D8vu{MQV}jTccm6A;XwP|w!PE)ZEY2Hyxi@bwvN7A zyJ)kMr0=v^6E+p=D6l-a#I)2QY*%1=jDNfmZo2$lra84efUl>oopFIF>8pV$?tK?` z^Hbk5)8sDanR^Cvg>PFUSr$*2Pmkv9BS*^LkZ>JJliXcXx1SV5czF+qmi$olx&PeR z5Qo_D^&Vx>N8USN>)bf?t6fgFtjZ_kuC6V12iK$*th8Ls!8cU;bsd$wX)$Gq7=I92 zVmVDEI-rZimR2@=+6AM}H#mfDdc&$8h89iHo8;Z}?p(f7l$lg;Y*cD(qcvmF+kUhR zLz0D~M})(Q)<&^G73ovyM`yhC7&cz7O4G6)@X++LbabAsE#6NodURpd+_UBIAO3!4 zipn$JKCE}~#;wc)QkSZkI`$*CQh!(vv1bxBPHpcfRH@d95#ddVBrD|ZsdLjZf_4MCAPzAKFHB`_XLM*F zG&V3bm$8onD1Y5sYj4}umi_Ku!Ee)|Fwgr16cJ? zCRN^pl79fkL6O0D4`3|DlTy-yN0#&ii!;Wd8_5AM7UXP2S=j{I11Ogm8v-~0oFP`u zV2uch9WV#Q&Vd&|?_9!toC5|&^p8nZ`0u4nTabd65fFni1$6NzsPI+7k_J3us0W=@ z;2A_j4^BXK#I=L$JUDi^nIKWHy_Ik)1k4|K4u4g`yir1Q5_5zE*-BkS36zvHm@QIm zAb+2D2XsctS7Jg%!DFQqAQhFT;8>;j+^`pTR5D1kP#5Y9|8hL?Q-TmZpJ1#eI11{g zw5P^E^{_yqj^VzM$!w8*WsK%ij4+NQaZZ!i8$wXl7%DuKo3g^{_zO%_WDN2kX&B&0 zw|~WGAOyLAMF-HfzW=@w`<3|TL35u`sR1&3y$!+l=8op z%?_JOHgh)HY);rr*)+@MKbFn!(n_9REPG9s&B?cGsnDNNv9laEUN(8Lqa{7VewW!b z^Isk=m$;7A($HeF{U zZRYOUWSF<*H`wj(J9oEvfL0&T6sfhVwmOd8I^UEyMqg6LG4SRG?JP+f%QYtTm~#Z5 zo^_Ss_z`WUPeECIqRvHM9N!!__6#S1G+3ceAUQl=1Zl@}PT>Y!l7;ITvoPD#;azRP zqRC<3JmG#!7iKVOub~G?Bt~#Wb!SUR@rJ+F}4LOX&eb0I?`1>Zk z({xEf&CU%AZgPEMykB!9B2(o9DX8dkn*fr5ENIRiwhu6=flNnt&u7g~Bm|nkQtyd( znLo(!J*P;SNAh<9fGMbNFZ7k|KC|K%U zSsc->Sfa?2i#OWoz>z9oOzd~V;-tRJ`HgsnjjN7cWTyR6N=z{TKUwjKDT827{n#b1 z#^A-93JPNq#9fvAkEf>PEE_WI^a)F!_9JI2HeY$2axmM6KW%aN*AUkgP2+8lD`>CC zQS+9!@l_B_wRHZG@M{GE>sduKniaDc0b00mKe?oWB8oBdn~y@nO`yzk7jcAGc9^r! z&8@Rgr0G}Ci5Y~KiTS8v)0+JgH9mzW;_WoReXZBaqkdU70ww-xzN%+<3j-JCF;cAv zHP)zr|7}ehq9oQ>9R&ph$@POmgPu)+%;B^v3)rW_Ddkj1prDd)oaOA)<5`EeVuD9L zT4WN}jn?3yXOvyQK=#_=bzOq&SRA8yI-3XNyX_ML3J!cv1+oJxNP!T2zLNG4iw>P@ z2Q}^Vobkk869KJSmKLJM=j)8;;%Pq{;_wM#We3O^?Z4jzK801a8_To3s&#HG4xKR0 z(s&JjpWFK^XfovUQ~9c@Rl+O@z@Mq`unmpoV4;Pd(#^SaVt!I#ogY5j8UJu6;K0!h zLuNcFbC2Ykd)?PIT&9^K@S8z}2zB&9pfW9;ebS9+A3sMexTvnHJS%VfWvZ_$5QMdl zIe~+j5;au|psI|at@>x*_xt{_TDCf(-kxgHoYy(cM%<2XTYgyqj(X>y_J>OA2*CYX z!BZLh=2gKk7xp(1-H>m~G;}u3*dcNw$dN6O?x<+fNz(TlBL3ey9#WBN?}^5iA-r2! zH4`T3A6jJo0H28{zUX83bB@r1bUltI5Zy(bA9+Z?C7TOshi|wggdLk6iHDC)nk}k~ zkAk}x*AC;s)tL!)L>AN88Zt!(#%g@84zotn=RX@OkGlj=&kehVRjk!M6%s`xBgt5s z9ABRbzI)u~mT!wI0_z#u*dK5OYCr2(RSubVily@P7~%f~VbfV&H-7C+;d1a;*x;kh z!l9mB739;~N-kkTeN-M}(3fEiAAOUQ_PDR6UFj}wb;{B?XKG3L|Lw$$ae%|+pfp){ zd2zHanA11t4@* zVSSy*Il3L<{IpQK*|`Pgy&L}tFi)K&+VA3IC2!xVZ*p=tw(M+nQY_v$h$PczC;Sm| zD<^vz=Qw(tNk^8%)K-{~^ZCUcldB_6-ZuMWH7t38F0ql-yZ6bobL9>MAy0ta$hcs#}}bLYw{iW8S9 zYJY>q<4dIdc?OGyd8AP26i<~iQtN3NJ$bO^{uzAEeAn2WZIl0JihV8Z*|3gJy2yBE zcuM74TQ`ZEyd~yi_!^9I>MNxAlZex1Hd1k{MDsoeLX5v~RwKcLgq)?eZIB`;Uwari z93fUR(p30fb8SxJAN9#Hz3h&3^1$F(ek^j8)8VA@_1*~6RdP|nf0L~%Z89ylgUkuD z@^eeW8ZkNB&;{`L%PQa%3mjJS$Y9|@R=J6P8vWsB;JBa zt5FcUZ>f+VJHEt;%9~c${F?CWmq|(Lf#NFkHSf_2Wyfa5b{#891Et997`uy5 zo_;e;Gci|PRN}iMNM1)_!?! zsx8d@3z`7E-z}HZdj>4eJ@)oHdA4y7eVJEzh9449#zP&K$1il1f@f@GE1wRDJ|d$T*b7(2ueZ5 z>LD{aMRBw*rY==WXuaBtm3!k3XM9Ql~r2@Vo5; z{4jS&)Nn-T^S9O!pU=wl+M~A6o&kJ66GVz!aW4n8k_=aV@ye-QU#U}2sv059T5s@& z-iAp%G>AD3DT}^;BdgY(XF(S8)Z$C@c9g8fk@}VcH>gmT&GENNO=+tpt?piCQc3-D zt*GNQaXb1`A7v^5m5|a&NCpW!nc-2YImbT`u(_o0RZc!XAa}@ZYLw@ zNt~sUiQQg{n5DQ`E1`*2a2I2sZ-XJXingrVuL6fA)>P;TJ0q*E)J7`N_8}xnEiexb#GPTaj#%vbg{F#&_aPRI1hK@$g`)xHSD{ ze_Y%TD^6QWkz3|1ON59s9sh&XbKc&-Q@Pt~=PqYoJm~e0%Jb^um+q|r%^i)%%W*Du z%Gqf=K)@I0CZtIh8K<+gGILKW7wIHbG(k{^6ITPN>VfL(&uSaVeorcHb#IyT)}l07ZD(!HH~!xjWSH0!)|zMQIi zzx~$yNMj7RE^OFs<~r%@G5Hr6>v4%ndn;Bw>1Y}BsBll=ss?v0^~pNYmO0;!9qFQf zM}>8V79;I&G5Cv7x8F)X;_H;ji&qNcutqtMj$ZkJC1F)K@`DeeH2wA>mJgbW4TDe-TY?ymDCrRQr@dX8;~jw_nfZm76R*~` zbL+s*;%(touIDb#Yy*kH$Wv;$IgNBGZ_Zpwhkq5>3Nb~4Fw&{M9&;^$k}@3u-y#R| zp_N37{4%+bG)^~V7|$0;?JPv0?7fVz%7q_T!_LENmN;-@8+<6AB&6>t;Wkqn;H1O8YC!KOMZancr1<>k@xb$iy-o z7?r4NnzUvv@g8}rEo27{>t`HW3b__^$8+YAyC!uHig5uNg*@FhG!WVbohQ}VO6O?i z%)QBl5`ZjT15ugpLV%$LoP(}LK=9Fj_`Avb-ZS%v=3tJ zz1$<|xdNNFEJa?kza>oTwRc1KNez5|juBUc=acZ>d|Mpcl=1)bySGmHsVSn#GD6o_wU6ZvaSUZ;KBdNNQnIad|V1f|E z&?}c-d{w1ZsK*7bF!@1rPw@81_2l%&Gt`uls%$0$ZwgAZ@xwdX<(J!y2gjntqv;0D z#P4_!J+p)|uk4MJUOQDX@rg-&!IX2ZK zK}~_Gx~x+PCHewwZp~>B6UAEDUGyQSTtv-swt|k6%G#u<_4;S4gh{m@Mf=sN`SgYv z*ZxxQ?|6ZSS&8F=IR=QGr%x57S}+qZj<9|3YUacbAu=p8F%|^s9_vUN^Myj72~pov znP7&g_)gEg4;Mo8Eq`%-QL17!Sc;sjVZM04a+bttYE-Sj#V~V<@e2#{3kq_9#n`}L zHVy(l4Oi>e7G5^Y?5`yRzyiWxA^!i7phbpoN3r?;i&3JvhjFQq@^bH8n$m`OTRxJh zRe)-7@zuJ^r|jEr7}>CMX`0oU4CKY6rKRt$U2nuzWx3bp0H$i+6f;Mo`=by2doE%y zLEX-4+EKH-r$IszfX-7qJ3uB;&lW(eB=V5V4IX6akJq%2al1n^0Z|FG=+=4M4e>i`{qDEf%E_nlDVnI6a~HpF7^Uvgr)yA9|ji; zNb8;|XIUirjvGPKmB1qgD1tfp5t-&mXbVyh_Br$gg{l>$Yv{m0%dZ%(8N`POYd$IOjyIGMgv}H!dM5C)6s3xxtp`wy4C?&2j0CgvOVa;i4RzqvMLn{| z`0tthrUaG^qiNZN_nt)!WrfApbp`=ToLg47>R`U2LI1&f5Y%Yn7eDsk8ccY^99@M` zQ5u?4$;y0@4VM|<>ZLjO&Ob68dVt=de#aYIW`T;{`TlXOwS#10u3F;ULz#%;^u1rK z+8NJgbnRzKcB1kKyQmWb*4DD3tH9@Pw;536wS3SdPD(vl{g9nNy<05rfMThDh#Dp* z0PotA8T#=Ut{W2mMAX6{C-Uf_L3+1g)(K}0k0u^X31mrEDzmlzu`?b2RVX0BJua#k zzx+eV&l0WrF=N`G<1+p&pUCIhtc;awVLHlWcjQdy9a@%cyibnu1W+YaZJO4y63|D_ zLuI{Op~|4tTtngKKH=o7zg{ujZm3{ozu&xgZe(i1MaE`A-gX@}JT*0trVSedc0Okt zB*CX8AG#hIkNyDn?az&gaiB5_$^SOHfDL6i{lV^0bbB;7J}2GF!Nvz7zIyhETakpK zN?fCtpNaVE^XAdA=w*eQu6u0X!*N}-);O-awy>PMf-qP>@U@)0pooCHsJw^>SV%-f zK}=X&Q4!29B+V@K|4PjMH&_+~qid4>{Q_nE(WI#_N7;WW?u%kz#Nmu%E~w=Qb>iGn zAnSQ#^G?r{u`e_XqZVuNcaA@@OlH? z*mSGprjZ}DSa?P3g|k-(gfI;DVLm&-``%;5%qa^$;=KGqZ|bqex3-Wnl}_JgZ7j#FIajM82bHl9~hGHvF&Syw$K z>f^oRWhU8V9ci_{;CE!RH^bUPKRGZZPtXFULvH^aGNP9s7=7s5eIKyzj8snlFF5b%W#QrF=V4<@ SAn?!n`2`4ASrs*v2>t_)0-Oy1 delta 20410 zcmYhhQ;;qU53Sj@ZQHhO+qUhuZQHhObGL2V*sa~}^G%)kYvv+V$#qh-k|%4g5i!0L zvGE)qm@UJ24U`J7t9R{4%9;Et00?{4g>CZk6U6ufoI`|qW8n0MSmM!M?l_TK0a>zPBx5)C^2~TZe-3-5G3clDegA!!I8v8O^gSC@lhw66CRbR^k!TK^&P-CKanI* zoQstuk1}T|UGZvkXgzGn2y%*gP@Tg?7($=_8)gh!c1Ur#36e>=Rfb3|@M$gOZ7qKY zfj%*)oV=v%WCX)BTM&lL4J$#_h&3-_o9Bu++H!whbzFwMM~`OD5OZ!B8608(0ydH7 z9^e8H5}vX+C~0pgUDs@j8Sairc0})2F))alI& z3D?YGE|)M{h_%hrm>%2iha)T$Mg2Q73MLg~Yb+FpbHw(`m$3#$zM#K#WF0stt;`pj zqC34bqLtQASZvCvneXWuAxXuR-&b1&y6p#0<%VUDFNLH}>d;lx zy}WY)Vs)miIv)p0csIDe4h|)@mor>lr*5wDfWmepO} zfdO~(?7lkXC$T#gS98TsWLVLYxk}ni+uASUSyg>!VmI10wzhsjW0kwbKmDK*PsVTs z`ANgC(IG&Dticb5Z`D>AEQ4il4NJH2j)!Ivzd6Hcd!NGwtJ~r{` zjur6B{Pka_Cp2b3MXe%>JF)H_!w)D%iy~X-v%=>~!EbOcVn!q~joAS}tm*OZ^&leoOTw^I@b!zJ$B-QdKK zfsHX_AiDWi2I8IPPJaNM(xfTMO3MO^4Unlpy9AEM%e$*UNpL)P@t-euXI{F9l^#vT z2Yg}6!LI2%P6SF(M7d*J2$Xc!_wEd3o6+$vvKhYzjdmVdI= zjvx2GNbxmTI+rqwfw7r^Fq)$V3W~#7h2j2ab4-1@3Juca%0K}S8se!W-!@{nZ{C1I z=H_!m$^5+0w?Til9R$M*Y?YEA(Of$Nal-xgA?-b#&E77sd79-%pgRTyu7J9th8Q4$ z5o0o^c{fUu<_cmsP>npv;Rb7M`)jCxSp$l6>w=5O?;iERvLIAD;Ru61FGO7v28;w} zml4|5X=2V2Ccyx?G+r3*JT)+IZN=}dyCA=M%)47`0Gpf*==$%1e0k_ln>}ux}+!x!<7KGewm??=@Ik5Om*t!GpLAN zEs~w60zs(h^Knkk*h~gQQwsd_#muBs#Ay*w$NnC_r|q2d@8}>D52wORD4=Z3ZO;3E zvKCq^v6E8aWr5Fn-5DLJaGSS)*X5jF8`jh+SxCadO5qY!al9Dd>mF+p*Nz7UcL|pP zCl!ITMlgT|;a)ce#4Cn8G&iaOvV+OSEwU(4l%0zfXPWz5L3dDyH zv;LWeQtlwV5(@&|tM5I~v)$uTJ$4Wq6^yC}*pGsaT%(a`Pn2LKzT7*3l-x1D4-gd@ z5fkW#c##+gqJW38I4t;eHe&sDS;WC*`H;h0Fty&-LnF6*{%QZ`Urpk@XWs?vazWLf zg(g5G4btnG>$$*Jydp0f1S|DI&kwOzlrLZ@rzRaTo>Fch8>$8b^>unT!it2O~r;nH2 zVg~$^l+6mzxK27QM@1+(8>gL55;8d$I|wiv6hMukeKl{fdp_`5mdFaaPuZ<79t;Yq zeL7`#J3;PRUT&z#zZ-V~9w?nF`ytuMu4oC=Vn z(%_k8hB1zGLl)8Vnb)Wk76Zn2`+XxTJ}3|A`7r44iQN)3me0`NE@b+9PJ2(_?=W?EC`Z%?T3IctP=d95m6HE zjbHQgC({d4gmn*awC3}&bPVvQWt(JY7LZ|QMr5a~qQJ{xGr> zR^6Y+ww(?`PPiX2WzuyrGag!z#7*9~YV5b^NDvS)X*AT_tIpIIVyq3e@ z^nBczEnsiLwTV@FnAw8)2y>ttv})^dX~w)7bSwH#uDd?i;f;k1zLp;3`D4|52xhyAAQD}X64!rh3*<<(1zJZIo|vko+_ z=8a+30ym(e=%ZZ(f^_2A-H#1FQYA2CC^ff(_^BDbtvs3=RU*$AfQ>ntJ(S4`ot=t8 zF$l!XPh^E2oO_)(Yvt<2y!`kx=Q}N3FKW^oyJ*ySU!a2tHZl4vNA&=GIQ2%=-+`1f z5|hno4=9F>cj9Dl%hmef$lsQQ;eJ>nNvmIRCnYQyc!tiyUoBZ z04}A5dQ=-|w=+z@1ZA}&=3)F=Smzhu5*mMs7y5f6Qs9i^%uCFJOLzs1&uyi$0#>c# z<-V)wdKQKa2&=|ONJ#Yp9Hr@>Lv(UzclYitJAMMmhIfq)kLU{Do0ijy5aG7Wh5&T`^A)e{@JVO2xjAVJ{v&Ry7 zH%ag^2o5y7wg8M}?8H zeom*P+4U|to&YBC=i2NE>+ynP7f*Opv8Rdq2ZG1nacD_9I=!ioq@8XCEbONsKs~I) zmTPcq?y;fpiES_ah&rt|Gei1i@t!zliK7jxp>Xj1mrqks8Vi%^e=- zAyj#aa6#?~moP0lG6OD8j!;?^J?|GQe3mkRSzVpDYZAh*7-epL7KxdwqgVxqF=bLs zXm7Q(qK+;U@S_CH@Wd>Q=k2QlSWf!Y7@SI&pQH|QYCx$k*bAh5z5eBt`E}RgN0Ujj z4}^Zl=~6pqmR-qI@417K1IDeirqgvIsS=f)X5!f%Lhlr5aA7s zJGu0K^Np-|p09cp2qwx&sA$7cKi^!-I|rp6NCbfs#~QA}QmkUcqKwZ5@YVVnFz6$^ zgW4efVwXl*xO1mTv%&p=2*{VSm&^e&tugNp6=cB;Zhc59vnf+t{Wx!$@@4C3h;*go z{T-PSHM0bC{h}tu#?LbRZ~}uKphu^PCCbzKEph~;^l$mjtQ~&F&Yh|bqDXEaf1hKm2MT0XphEa=Wk&-#RNBgJt9RR1RJScK8u2hU z?Hs2~q=9Y8Or$G7WkCG6^5y-Zdb;f=^Zqyi6?>-pLmxHDjGoHHE{ z!&t9wFj0Wp%_T*>@mrKI0e+zAu*@+38gjbasxT+YwXn9AvP+ei&0fGV>X0pQJu{fN z(s7I;_|q4uUB>j)YCFboOg+@blL74Cko_gAxG&uQb)r_atLl zM|Syqe05t&xuhhXZFG& zk2VmXbW;UU7*uJHkvbHpC7+~@)s-u<3NHlAVbB-O2OMfxVre?OW#GGG3ZAMNu35@( z?DahH@)|IUoK@c!x6R+WYK&WQe4>~YSm(I9WwInbd7i`ZMSYReYjzI-I&)U(RMSnN zBX6QJPlH+^SLCslR+?;lOZo)ncyrv2-D(Z8CiqIhqljF3Q$w1+Ct_Ml}=`|Ao<1viY$5~ko&lBcq(GBZ=fsC zqf#qyGVSQSRo{kMQd-!VFq7FS6xxdY0CPFX_4?>E)h_udxR0tu&W&T6CnTJwLa)Lq z@2+~!63SU945KjYwhbD5j<0e#bvc<%@RRAYV4!^;;5J4{}D z6+{}IE9qh3T%!HPznx1|Va$>_Vo=%QOp2|x2+36aSwgvG6#iJ{Il46w zpvwb`QRF37_*y4`4A2K&n>Xi>Lev8nd~~6Yh(mea^0A=O1Uvi}r{o*rT|tZya$GP* zM5Zg&d6lUtZD3206$cF)csLNxAajy(=aXeuO-EWza5+JmF5}cN({S=!WxOD+3Ke`e zzV0y#YdR^b04&1oX1W!|#a0TK-6t*Rx6lmA@iWK{OqbLztA~=FY z^+r%@k2Hn{-*ZMz)h@Io-^g6ouT0{Vu9%U^p0|qr17k8?28%+{W}RaJqH9c}y|| z*lQbVTF1)(<2dgCtc}a@+B1zq9I9=qkM+_!MUQt4L#nSOgMuw z<&jn^S#k&;?kb?iw4e_%h1>RN%*Vm>w@V0>Qvx8easp&H5I%;E7aLA8ZKr*s=f?@x zHH_r!B;&gRW=K@48sc#{!Q%Osa45IUs{rK0cZOW47omKPITJ#*uyiVrcC6e&|5qFOaO3&k=a0#& zN@C%d?b9!2;q-*fJC4k$E%C0~OEoPYg2D~}_?JMkM5zA>#IG`>@DBGo^mPu}1-sA& z$#RA5!Zn)%0`(|dL`n|+*6~ebp2-`B7@i1^dtsu|8rdPHp4!`-f*}*%Eep3cXfnXT z6lokg^Z^1msg)VZD)=KjeBI}bu)3F6-=+E&xR%zV4Xc~7GMpKSwQ;F+;P=$)Hai!f z&}si7@xJn@yyl5DK?WMTNhwf`e8C7xs7|;HBjw(RP4Ht3*GMHbCbXbsvn>WPTu_Rj zLM{*4+(%Q)meI7h8bc&&7#}h2FtF>B&}n;qA~{c*I+~0y_tYL~q~!wP_R^I8ctfwus26WWTy&TJuk=K4L` zkx=b}6&$}t=O5jpp>Weu zEQ5ZhpyA-iHTGb>c}t^z@SJWLMg;jo^j_ZBbSM@%_T#lQtG-d0t6IhuZA2^3Q9!Vk z4|CAVY1FyIW>>Uj+89B)ckmyv>YO*yfn)`;vOdW&wHQ2mrP_bLV!!`guMximoJb=HoBkvtTDj&-2!$* zz{Q7fm(9gD(G(AKPysYg96NIPw52)69fi$EIg(?2Ej~K0J z+fV3p&8Fe5ib`##g|+~oW4I8-x05WB6_!hD=pk1`uI841i284q3s&Z>NvOwdSL(af zm^3*3IQ-TBV?XR$EfuWW>dmjNIh3)>(O?U5EXdbA8K)Z>eZBfYc)F;D0u`3MW$_Y68BzTvT+W;V36h~9;>R&!qW($@E7an#0a=3H)eRD># zHG+IC{e9Utr+UWMvxPL)5+a-8$9GFGu}{(HVv$j=7d#<0%cVc2)r{G>o}WEiD^eXP zBK7)k_h<*~d``fJ7YW|w-A}D^1|$jroY+Eq!_i;2N8rKS(=HZ>OD4LyW~VzJ;fi;5 z>}wW1E{zIv9vB)P?Vt#9P?<2ZytsrPy3z{ntWJl=RaXxJD|z+rR5Tx2KDX`BfnCv6 zG*OPI&-r`~tEYleS>)a{r|3FoaNktWk+s9Ea2)`_)kGv%_b65+iy695QiwpSe3AHS z<+w-GgU%?Xf9zjZkIMh>tk#WtV=~ORLYr|rA|^5MQ32=qbPPNu#Lzq0VhR8U&!qx9 zCbt3mVYbCIyogaaY@!o0=-;vcTJV86#-r-|&>kSt>Q{fzYr*W()S@THywJdjhjU%X z$8%L)N-5&SeN}VgxNjggHpmD$VRld3*v(}mf`0eWysl%vOY0!TSSF6Y3mgi;mxfN? z;O?uWZ}WdHjVbPMfk^N4B|#p8HqicdUcdwYJ{$U!&$Xu%3Q&M@GqGg^wSZCs{MBV$ zw>gmdKQ$i`L77OKy->s)%Qr**yo_y<1j;?&eB%n$3-H@}EoX zNs}`n#&*2jz~fF+{y93V{Z&Q@qMm>O zJTK4pCMF-}T;sov%ETK^2e263eA$uV{i2$#+KqVGF`aH_AG5hOOKOQ^2W6NT`Q3V{ zzk_LJJ)tk=#SeQ0>*_xGT1p7+yDRp)PTe42ADnmL;9t@kj!@cOBMt9||6`L>Lk zc;45$kMJ)`J?I&gMgie`mF7Ti$4MB7xXa`B2%iC|rWmr_PzU^+BAF44Pv#wNtAB7? z6*NPw?^Lx)52OPbIOOJK?LID3z`C(qO6SYQR0aZ=^{rDf=djl7==Gr}W8B~_We@{; zS;LVwWYIs2%B4LQmF!^vUY1it2Kt(g?d)@MSW!)O-xzERxBORoSgkryP#Asb*Tbfo zob!5X3?3rXR&*ipFp`tSWRuND% z$dZy+1z?73o)rhNqIf$Hsl@@4^&KvbzITY~gHmLrB1pBmzfjcx`ctdimu=9z(uNyY zDPt#*sRXGk%*1Mj=Ct<8FXvLoyD^S}df!}p@R7IniFf#08<9uGjd34oBb5+Azdgne zHkftTi!3u=E4D_)*bW7+-9y`+)L|2R8

|G|NCiE0xmsi?txyFs35c7@lXw%6-ci zX$=b6FuIu}hxJYX9?^5oHh188(Gx;R@f9#(7(Wx#GI0v=4iXWA(X-5JnMAae2T_Bk zJ?3(<1&ZX87kH+PJG6yM&X|W{#r~q7*4UyDEleh#=x``oZNs;uxw_DrK+@kAV*5sQ z9a)Tw#GoLye<_%o(5HqB7P@I88n{;zv6{@rj`%(DJ?bz3c~#WhJE&0JG)C>GE`oP? zXGyDs<#Q`MVc3#~wDiB$=*JA76lDW&Debp8QjXG~vX&y}6M=8_NBLsp;4B8z{9U=U zV4FOJZ_e67nkCqzgL^FC`1edT6JTR1-{{Tg9g+p(%)P$VJq?}6rZ@w%w~r>NXnv=$ z5oMNbKpN8U+2p=w&&OX^gd>aNpBYVQpr|27Vi8AT!2bnE$B`K5BP+ENGS)W)eGQACXMYoct7sFEE+vZMGR=QXI5O*PN$rQIb&~D1$cAY$07ys$E^KJQ@ z`1$9XfB)oHaR1~VP>$>WJ*i-43^juUqr{R1vKWMkdfGK?5=u+d)0y%OFk%?DjQ$g& zjhH$qsbxk3Mn{b_w6Y=&#;PnvQoji;p54pm{XH42+8boC*o*07iJAVhjvhPIqo>$aT5Gs^v4}^q?4Z|sv zWcbM1dT1!96=#OrqyfOc+91UfPZXme=_W@CXasEwWd^`ASP99b~<#ggY(-8c6c(c8O` z7Dx+JpT0=Cz28MvZA;}2(PxgvdSUlEX?_cRZ(-a%dORMkRQm&iQ z*ET_(-wW%z?r)eA&r^J4_GdH2+JP>**Nei8-NJkkb?rShz`D4NG1s8<>dcF#R_C%) zg63WV?Y5%=&K9z*c>i5c>E<>m9e20qH?6&YoYx;c>W{o6K}X_Nl8;KeW1D;|XUM!+)%V9j4uwT{P}_;UGZVkAu3na5V4Sg;pv+S>Y4gq&BJewOO7S>*msEc_B- z^I0um<*%sp@+d{g3~7$+twx%-4v}*l7_;@$v&^_X%V{@1VAl!QdSHJCf{eXc;c;#7 zE?Hr`P!xH@Rp_|W8j)F@;6LvS$apNSHI(8%UwT(BfNms2`AVL-p2qpLp>*Mg?0Q7D zVbP}+KhHsDpK-x^WkP_73zdHa9e<_$33Q0>hgd4d!&Y%sy$g-%CadeqkC_N<*(C5K z+kyUH$HyF*87EHfkiVCpmuX@noQ@{fQQ_vBGKe(;w(fqqDb=g&^w384muUkkyRLj1 z$W0IF0IGa+cS`U4Bpu66vM54mMALu0Unk_>(RY00rt6#WgCzo=bLh0Iu7W&ls~ejc z8(NoY_66714|cZm1H4NX{xmL=W(_)vx5%0e)e5z-sY%feInmcxLA+lMZUUuso`i@7 zjoXR6-{MnIVa0n_KAWRqx}#lZ&J90@Py8LNfCTxSL*2Rgd`9?r>-h(V*Lf?i~p zHX>{dIRd(}3&{>@K|Jju?g9T4lG|Jw%k#G0pN~lh2bD;ZQCFG(f@WEc6o9(Eb-*JFU*{*6XDb1$1f#y&^}d~Fn(6)Yr#?g*u#~2 zT(l)E-hOjKJj}@K_zB&%;a`^kX6w2DfQs~%@sF#t)+C&|4W}FJqbUV3YjR5cZMnBf zjKrq(Ie;C@77g7iAp6j{bbEWVkKXP>;MqhIdY`Ip_`dp43k0OMa_ zxnhUEvsrJcI90UuG)W>KB@nDOPOl zY_s*G;60@KeTW;c9-WxXkA{9f0WLko?|nMq-`qd9+U)J%87uQ(|E-kYPV-?IO>Gn+ z#}pF~b3fUsQw=o=uQo5t;Wv}qVW!o<7Jre4n13RQnyBKspBZU?UAIn*;;x0!=S){! z7i|nm=4?X{kyr$_w&kY^IPQ+C+v8Yc3{ItgKh1al&ZHu7jx8kA4*}L;GMdvsQ97Kp zKNk#rO1R2Ol#-Lhsg-Ufw=+uUoO-@buQ@BGjH z0&@wKopFPqg^(kJVk)z45EbMic&*|~FVsYd!6fw9S+pA=ypYIpnvKtt9cnRfG7u$z zhML4M8F^e4QMN*1qWprJ5-wM;+^YIGq2X2_M38WV&JZpT z?DAG(Q-yIApvVi{yP=04#Tn$%B_a_a3sGT=z&Cy>vtq#mU=w2*4KyBLP!JXtENv;E zBAAUrY_Y-cz@ZXsC5qBHBHuu@z<5Xia4sh@k;tYQT;&@jVze-sPLVXy^1J}BDeHl6 zL1M#iwNMI_*sq{%;pSJ?1sIBx7Z1@>-qm~~H$Hq83)yibQJ`4BgcTJC>T@IU0<#xT z48_tQ;1~h74++|AAzXyiP7YgXVd;z14NP&+D@hm!UP<*E17wl_pc7I4J=+ObGS;=! zbw%y^?bvoyFE@i53lR#(s47P&tWs+ggaalj%D_Pi1cOQxKn2Q5G$t2k2}4K&+Jo~U z3M^AH#@$v^22L%ci6(s6<|^D6For5y6s8F}6A#w=8ca&8P3FZp7AGyX9vFmrfzSMa zErbJBV}l?I*7{&{d0pNL;eG|rN|tac_aw|aE7Jw7LBJOSU`99yL)o4X%rIf!+Qj{hX>imv{S55 z=@p_3hHQm6nU{S}f1JkU!Jr9(?j%A(h9UzA0^$%r`hEF3AX@)>j20J5CHLRcgNjHU zNe4&;`$|VvoBZLQ99)P@n8oYuJaG5LZ*LRWg(YaP91`gDZMl)#Fh8SypBy8aoUIkR zbG=SxvzAY^Ck7ym*WClaq%&FFitY>Fx|wWX$OCLCU@M5N|D|}?{LLecyDK7IKJXuo zdP@e~dE^we*iaaltGUnnidYj!_8`cp5)NJu@eaBD38NFS_kGG;C^7C&v3<>JoACLP z70(~&Y(|}HfjBo(k$;C3T|eeInyct`ShQiZW0ZXhcFxCMgM0^+P$1smd5bLgXAi7$ zAgA>gh8@}D@hM%NXwvIV>yi~DyLRVX`pa3N>vC!^j5{3EaW>*vQKM3pa@*Q1KnJ~a!?Hwr+tj&vR!#(Dv+$6=(J_noE zfS6QLMuGJXA{F4hW$+@J8W=&lXXHRJMhb0x-oK>MF0^ala~V5Tj;lLt;SgZoR{3+W zPj=Z~(ZhH$k9$%YRSi$iCMB}$w`hGGnTpkz3CI7s159{)@NVh9hTWg_jOzYrZlRz3TW@ALQ*O`T%^j}QZ`jW|R}jQv``1~+`1sd<1k&e{3cFp_} z1|~hBa#j^Uk)Ea>i}HTL^k57pF(*_+ryf>ppS{mCIoIbW zQ_u0rgZ=dMmH@m=;OM3L-lmS}z0rtp>XbiBh5RQRS?N2*cWxPl)0&L={7LgVe>Zgk zLUL?Ti(m--+aBx>BJd{4EPLKdO8s&5wh^`d`s|5jdk!X1wvH0^-vsSph%2f-uPhX%Oj!Bzt zcboi-ttQp7RGK~J1``4JHq>deDE&4`WQq1|FRez()eaUUS2_~bmirmv>_?JcJG{Sz zkcCaF3Qtdv*V3d+ zPkE!RBL4nR@!trd5-DxQW#w1`10xozFqx zAH_A^G}XNXvbRzUT1wcbb2Y&$Z>;U==k6bI`?+_%m#-jE(6X}>(v?)So+kjy=dg6E z*RSg#6M0t|QQko&zwP>1Y&@c@hFkvPNk5NUl$JjY?6|N(}-e>J3 zIS9U0Ir-Y0afo$!)~@Yz-E9E%Q}0YGLxNuMD}USjX^Hh(+{QC|uQ_+ zaq9Yk6p*{CLrN^GA$*RM;)?zACkiLSb z(i+V>TEvjRp~2%Bmh$y=vku1x$dh{vOD!yphp&XdZ%J0cbz*DwzktWo$dtb@_U^Ij zWG0>+v;U?;9;NP(WTS^calW2Z8T+MUUrSIMX?gTThqG%wMCGgaqS}g`gTX?CPA4?! z54!; zf)1ARtgLXU!;*7M?YxR3mwH${he$mUcPoO}|4hk#ox=TcMtQc)Bn7S0D5|+Ng#=2N zEH!g9OS((L(zQ~!)8p~)xR1S8=d>{!pS402mpZRl0}eU&-F>HVq4Ttqj@GRS{rPwH zb$Fh%W8#F{%&LIwT`jVJAqyF@Bp<$3q#76M2fDwB>R&l(t%k$F&uPNfMoBEX8gA%} zn#*~^5DJ2Ij8XX>qH&uHTv<8W$dXM8^2+nZtzgtA5GO zwJ(aYpeg8-{<9B);rlun~GE_fL9&~eW zang}5r4X{mbr@^$fe9?&VMzAiOJ3tGm>fv#T)>!)T>`K3*DV-v_Cv%$o{+Yuyc#}}w zc(1(wsCI(88zFc{%{2Jao-p*8si+^R$}I`y)4axIe6_uP&qbB?Wk{uNmK{6uri|@g zDiF}VZ?!L$X3+Ua$zIUbD!HP4B-`57!S!O))q4~2I1^^sIYFr5-1XA_)s7b?`POb5 zt+$TymLur%`}K?vW|6yTl@9yZ>HajdQ2#?6Vg4Mqz#lRPtY1y20Us;?;d)l_O2kaM zG{N>ju6x~@kCR|&8m$@f9W7|lGf-A88KD}!92n@2~J*_&II_l zs>Cq%l!}jKTE3|3ysVx;!;R&$t##VSccgC-zBQpaFB>OVw(J6VD7Kmeuim6{BKW5n z5`K)aqV{yX-ej7wwyb^zAMjT+x!mPJvapR`^E1?`T6Iyu4V_vCwyX7f7v+=7)kEvo zgyg6+k8}I6u7OGYvsl(@>dX3gaR3nXp>!qzgO9wFl8!6B8_b+E6f7}RWpg#2G;w+K z`mrAlXP?nyzr4W^S8Ml=2>2_q;?*2T`99trAIhltv|B>66qXa4;C_t}JyPF1u`UCp zO%dmj9)A|I$ZUt~95G&Me!AK>91>^Rp4`5uHc4u`?cGF{V@=jIW%Z)MHlpzJ1WQ#N zU!bi79f$sagAJ*^|35q!tz*a!w44ax|3kfO>>U5EJ8DeIeuovV&ZN0S*Yo(em-|JJTQfp5e2oq$SO zt)98rDXqC(8qKMFnOT{$Y?h3#Cbceh3}g`taD|q31Y~tHGeT>9ugitLH!h8Rjg`}B z^$F^@20+F+UWwY?w2aguwt6XZ^pHaHL2H&uu6kwgLWVrX7A{HJWKqU;W(-??Aq`wz zA$-aN#?n8`0byBNrONM=t;!w!$F|^R(7QIa3-1C3>rN_2CGBu?lEw%;iXF~ki6xl3 zHg?D$Ngt^AFVwVeh@=66l(k$t2#H3vnm3{h2mlLG9O9Tiun9|1MjDYodkK|p4lBZe z402E_ku|cp8M+lxiGi5|%n67~v^ICh9c-)<7|Iz!K5(xqwK~!@5(wwp6lAITacL8{ z^uU}Y5D5=xN=PBNnuKZ@iHg8GWQ=((YIGlMPoR_RcCR{IrGXuhv*7_CViFW}CA@e~aEgl!W5Jd$k6C4UwoO%RQ*PQGG zwpQ4F(0^p8CB6BTsu=_WwT6ZU(#MVnsjjxbS0-u}gUl1grliIdsrHnu10O|2lND8{ zCJZrUGiiI(9;b&-+U$mc(Hf=N6e5pC0+8SZ?HdK0=DLIs0%}JM$OE$bb2W~HUv_)B zwPMRtbo>p!j|oHW10uQ)pax{Ae{EOoTDUD+j9SLdB4=aeTWo$zSHBqQPTt?E*WFg} z{0GuuzPZu2Yn)TmQ!sh87Fn-6vkaMk-+yePYP9$blDN%W$InWqC;Zwrz^7AI0e`*@ z%=mTBp3prtV@|CRH0g3ZGIn)m1Nw)*tVn&&XkHnt1oZ2kjNKi(Hh!))C+==TWG`Nm zuwE5rkfE)|2nz!mk=dAvwpM1X^3-x}vt*IToKXhV8-d>t5%3(ag%t7Nrnsj6- z&Rasx<_a+GdvD>zhySY}tl>oA1oRezUw44YF^&A0Y6HEOr%;`F3P;G39VU33%uuDO z&{FV*%kvhfa#=c6qv9~fP_^*py;#g&$BFEF`WEm1@n-WDMEY0JGGdWlmFhS~`d70n`4xg@?lj0KR2RlG^)v2^mA;Ff5+y2^W;nu)id(^V!@~4yAzU(th4KQfyUMbbQ z_Pimm;spO-*9K+*CEMnvx#Yy8!}b!PI5B&&ySQn>1%MPZ9|+GEpxGMbAq!8`@{Lrb zRD~2{2u;@MYDLEI_cS9)TuTC0Twg#$l|~yjd1e=xHk1@IUst*^tbYhi?kx_R!Lc|iI$iLRvr<$-_VfQhTC@8@+x}j zacMHPh?ET1<;!@883)R9q?sWZ?8avhwB)W zgx^oW16z#UhiqKk0m2O1ux|{MnutjMR%}>S)TcwExCdx$gSr0taqw^07K;4ICAd*L zGJkS*=BDpTRRMSBE_=M3R-sYlVhiImym$e}H-vf(Q!@5y)ZdI9-@p;1SPN`nnaFYpt7L0GO@H)3HbQsiSXo3N@nWN13d?m z8To6i)>r9gdwbhKGQy)vs{@b?PeIS!B z>j!Z1foc&-R*Z~UxyXUMl${X&!6irRbC`ikG^KFY=d3WROCG4t87qEu>EMkW?Bm*o zt=qNQNf|^z6`6SUYkkC{c**+g{XFGj}+E3 zmNUBFfRaXSEgv7|1a?=h93!`JGYWScLB`@*054Lk)$_Vyk$zgoHv8@4p*Y3EuARU+ z8=M`d3fBB^BW-md@p|rH(EaIkkC{cS1RNII9EI)B_A#~nYwNAVA3SaLp@nYS9_v?2 z*jX7J^p8gIyBq&Gy}V1(hu!<$d+K2G+0Hq*i(x*611B5KfeA;48=|+?*rem4ZJyG^ z0B%Q+(q=aGc_nf^_2L26TzfoVd#gTKp|cgeBD}Rmkz>d-&hs_BZ|MK9L>sL6kE*S= zPcLc|`?t}QF&kyCwZaS+J=90a|0r)cPm1yNYG6ZViDxh&)_7IMmfJvbDF*ygFyzGm zhpbgsg(jUnk8g+(L2rRwvsivjDUNRP7%lbd+Bui%KcG@zM zpC|q|V71JZvPSu9r|-=}BEm*u9H-1H$yUwSkGzOf@HhV_TMwl0Be`mdRJ}5T)7kX& z26^WbUuvkfb<$U?ltfs&F#_=!#<;nE&P!u=tUUWiu8 zeGGrx8i772&5R+N+`Zx9UFcho7f8h|7Wv3q6}U45$vg7eeCDTn_P@!&F+4cO@~{y! zS;hhi!!jmRj0ui=GWe2(yEaIh=I2E`=Uxm%py=sa4W4oRn9uO6Wvx`k!REkkq>$l7 zeLieX@l-x%c*qo)Y~H%*p*JBm{kUCIAE^GoKIL2O#*&2pL`;nd#-xGQDElT>!8Gf#X}| zmq+jgQ1al-A_=y8RYq|8T$q;~eS}C-Kn_yj{gdqjRowFF{s8y^G05I$>Qc{{V4GVwna?Vorlv@5c zi@6*$0ld-;Cttpw3H63Yj2ei#a2rz6H*WAHfBt=)U1dviN+_TF)zqrRSjvx?w zssdEXxYpg!HKmjtgHu#9BtIALiTLK^K{G#?jm{R+S$UK4Y+O@_ zY|+fN?oY>ucs?E;&ntghI^NIkjkc(rTb7?`wCBgPvQun+!1qVMWFWSOXOEiE@yUWB z9|*3;XIom!fq1+ajzn7jj_`kf^Z|cO&u8LToQRW8 zXD7`>jKqJ7_hKwg#Y9ZSbkc}3amH6*dBXfxneMEaji!g<-{;dsbGSdwkCzvv$4tz{ zeDqN)#NuSuG-C0`RGfevSWN&x(rwefu*wzRHda=b% z8r*-)t=6(55MqDc6^Q8yM1{UUwv<|mB=#htFH7WscnGQdBp!<=kj+!^Pe_Nd`6Ww- zLO4AgE`>1aL%#%mG6L=^^b62LbFsqk51{x-{3-ryX45{H_BLStw)5)g_OlBxcc-Vr z$r>!-uD9qm6&-M2xqC>;3mn&JHL<>cQ1v0a-vRMahVg$tGmy_RlrLIUe+5AQC0>hP zH!J=AIW+S^_m|)wPRHZn3^K?xh-Pv)oS(E-0iopo8;oN-AG81GqS|CAu#RTV?b+Ab zO!EP2U1d4zrS5Md_3cMb?r-1!p%wc5mz%_{yn;D!KchKKL9v12;ORhKi{G*fq3bx#?qbrqg;p_oKxlazAfCT^@_OgR4-a4MJyr5*_9MI? z94d5x`TrX04^m%m|3P-_-=!|!JAEE*6&iLQZ$E#0@aqpxhl>+*7#&ZxwjXWnHpl0% z^)22l#B8l$P(o6cMI}p0bywcabh&#z>a%w%XT7t#{o>XAHSGQKrP{z3vn&?Eq3pQ2 zbH3L4-{#-v!|@uwI6j~E(YTcpdw%cP-rn;yXgvJ5XeM*`+I5(0LC9OiNEVg+*@NxK z+xLG>xr5A>XBPJ*;56iZe{`&RSH4_jJo3Y%@pL*{bnpqoaNHGQ-W`!+}&t{|3M$DR{aq}_%>}ny-C!7cE2h2Jg_oQKN<%#zm z?!JEgYK=5n4|csX+cNZKs`X~K&(+k0X1lITVoxUHvlFCK&3G{s&Dnf}sI8VLi}8Q( zbpLRep+z!tj8MK9p7(LNm3M#i>dEt`4>oxBa<}N~y|uWYMBHKxsPgYHrS2HMO|hr4 zE`F6$+}+>b7r(KYL$zj2pZ69hqS zYmt71eul!L-mAtgi#FASyR8FfubRIV&(YConK4DGD!5Z)8Ma zbY&nYL^?7sGBq$XF*h+VGBYqamxa&+%>go(Vb%jEmwV9z7JqV6+Z|f2JIt;|D5YM= z4kRcEqgJE&?t7dBaAN2#^RN=a@$vET&wty;2?t^k&nDnf!Y#sVMm$Dr&m*=^9PSft z6OTH?c8Tw!(IEhiM>r$EY#=r#z$rCskAUMl1UrD|Vg+M?k0GdqKMQ*~SaKjh2?dPe zVc}cECX`|~z<(CXIF-Q&<-ThGjzC=pJ0Jk{K|XN8ELZwCgvmePEf?>9TRLB-${?VKE+mAQ1_9{p+ku*l}CWwr@TSugeB;00kf>U%+ zl@Z#*B+aBR@*C!-U|(@9!~7h+WUG{bMGN0E)=sQF}OTok4w?z-dNp z(QQ>xpAadE+Bzotg(bdy9FGTQFuRu?(*qWNJ`88W`_38G@!RG(UY`VIPzO~-1yJ|t ziG#y0CvD$7wA!tk@`$%4XAik9VMRl#qIp_Ea&=hea@cWqG@DJ&$XXt#e>q!B%LD+* zJRGV_!_uMM%b_Q~4}13$Md5<(#4gnq->IZgsEsePS#5G+M%nC*CnjFmU2YdR|=E{)WWkvc&ifL(^32*y{q#MND28UUXLmiR6tdM=zCQB0Cjq#JbH!j zG1v%P#H&u1RMZ1-fBY0~!mKt8-T!NS(rdBV1hNq@7%wRfMkktw6roDYCS zPLdxIG9;Aqm7fts`Ro9y5+IN&zo!p>0e zAJ|yZkeq@-68#4Vp&&7a#E?)B5()?jH2ed!6vV=WgaYpOO!LVv_rCkix$hn4oI8s+ z7jfc$#vG|Ipw~zO5vXJBD#=3zG_w{ZWkMFTvzAM`02iTywJW4ce{dPHAqQ;3PS~rg zh84dKF}MMFa1-*O94g?BI2X0X3*Z){pa`ZZPFJb|as2rbYcu6W;0G*Oo?uJ$YX zpckG&7qp72OWDJ1fA9jj#kKvjwH}y+m+%VW&<|7a8WJ!7gYX6>;4Qp^_wYen*S5Vm zDN=D@>7&T$e@jCWIXbcQNqk=VxzFNz4=sHWpIEf?ReUo2%Z9~|W>^{#Ka<`a75{C) z(wO+!gr#xu^S{D~{ul}@j|6sh11p7r-`#;f@xba{;P3aqR@!1<{W!3Z71*2)Y%TFB zW$KjSQie+zE@ils;ZlZ63&d~Fg%f)zcMicGNRSF;Ze(+Ga%Ev{3T19&Z(?c+b97;H Wba--QW(qPiIW{>s3MC~)PeuwP$*rmY diff --git a/main.tex b/main.tex index a00e1ea..53e50d5 100644 --- a/main.tex +++ b/main.tex @@ -179,17 +179,19 @@ Consider the Lagrangian dual, We have shown that the budget $B$ in normalized min-cut does not really matter as long as $B>b$. Note that $L(\lambda)$ and the normalized min-cut look similar to the principal sequence of partitions of a graph and the graph strength problem. \subsection{graph strength} -Assume that the graph $G$ is connected (otherwise add dummy edges). +% Assume that the graph $G$ is connected. Given a graph $G=(V,E)$ and a cost function $c:V\to \Z_+$, the strength $\sigma(G)$ is defined as $\sigma(G)=\min_{\Pi}\frac{c(\delta(\Pi))}{|\Pi|-1}$, where $\Pi$ is any partition of $V$, $|\Pi|$ is the number of parts in the partition and $\delta(\Pi)$ is the set of edges between parts. Note that an alternative formulation of strength (using graphic matroid rank) is $\sigma(G)=\min_{F\subset E} \frac{|E-F|}{r(E)-r(F)}$, which in general is the fractional optimum of matroid base packing. -The principal sequence of partitions of $G$ is a piecewise linear concave curve $L(\lambda)=\min_\Pi c(\delta(\Pi))-\lambda |\Pi|$. Cunningham used principal partition to computed graph strength\cite{cunningham_optimal_1985}. There is a list of good properties mentioned in \cite[Section 6]{chekuri_lp_2020}(implicated stated in \cite{cunningham_optimal_1985}). +The principal sequence of partitions of $G$ is a piecewise linear concave curve $L(\lambda)=\min_\Pi c(\delta(\Pi))-\lambda |\Pi|$. ($L(\lambda)=\min_{F\in E}c(E\setminus F)-\lambda(r(E)-r(F)+1)$) Cunningham used principal partition to computed graph strength\cite{cunningham_optimal_1985}. There is a list of good properties mentioned in \cite[Section 6]{chekuri_lp_2020}(implicated stated in \cite{cunningham_optimal_1985}). \begin{itemize} +\item We can assume $G$ is connected and deal with the smallest strength component. One can see this by fractional base packing on the direct sum of matroids. Note that on disconnected graphs we should use the edge set definition instead of partitions. \item $L(\lambda)$ is piecewise linear concave since it is the lower envelope of some line arrangement. -\item For each line segment on $L(\lambda)$ there is a corresponding partition $\Pi$. If $\lambda^*$ is a breakpoint on $L(\lambda)$, then there are two optimal solution (say partitions $P_1$ and $P_2$, assuming $|P_1|\leq|P_2|$) to $\min_\Pi c(\delta(\Pi))-\lambda^* |\Pi|$. Then $P_2$ is a refinement of $P_1$. +\item For each line segment on $L(\lambda)$ there is a corresponding partition $\Pi$. If $\lambda^*$ is a breakpoint on $L(\lambda)$, then there are two optimal solution (say partitions $P_1$ and $P_2$, assume $|P_1|\leq|P_2|$) to $\min_\Pi c(\delta(\Pi))-\lambda^* |\Pi|$. Then $P_2$ is a refinement of $P_1$. \begin{proof}[sketch] - Suppose that $P_2$ is not a refinement of $P_1$. We claim that the meet of $P_1$ and $P_2$ achieves a objective value at least no larger than $P_1$ or $P_2$ does. For simplicity we assume $G$ is connected. The correspondence between graphic matroid rank function and partitions of $V$ gives us a reformulation $L(\lambda^*)=\min_{F\subset E}c(E-F)-\lambda^*(r(E)-r(F)+1)$. Let $g(F)=c(E-F)+\lambda^*r(F)-\lambda^* n$. Then the claim is equivalent to the fact that for two optimal solutions $F_1,F_2$ to $L(\lambda^*)$, $g(F_1\cup F_2)\leq g(F_1)=g(F_2)\leq g(F_1\cap F_2)$, which can be seen by submodularity of matroid rank functions. + Suppose that $P_2$ is not a refinement of $P_1$. We claim that the meet of $P_1$ and $P_2$ achieves a objective value at least no larger than $P_1$ or $P_2$ does. The correspondence between graphic matroid rank function and partitions of $V$ gives us a reformulation $L(\lambda^*)=\min_{F\subset E}c(E-F)-\lambda^*(r(E)-r(F)+1)$. Here $F$ is the set of edges in each part of $\Pi$. Let $g(F)=c(E-F)+\lambda^*r(F)-\lambda^* n$. Then the claim is equivalent to the fact that for two optimal solutions $F_1,F_2$ to $L(\lambda^*)$, $g(F_1\cap F_2)\leq g(F_1)=g(F_2)\leq g(F_1\cup F_2)$, which can be seen by the submodularity of $g$. \end{proof} -\item Let $\lambda^*$ be a breakpoint on $L(\lambda)$ induced by edge set $F$. The next breakpoint is induced by the edge set $F'$ such that $F'$ contains $F$ and $F'-F$ is the solution to strength problem on the smallest strength component of $G\setminus F$. +The number of breakpoints on $L(\lambda)$ is at most $n-1$. +\item Let $\lambda^*$ be a breakpoint on $L(\lambda)$ induced by edge set $F$. The next breakpoint is induced by the edge set $F'\subset F$ and $F'$ is the solution to strength problem on the smallest strength component of $F$. $\lambda^*$ is the strength of the smallest strength component in $F$. These claims can be seen by the following arguments. From the previous bullet we can see that $\min_{\Delta F} c(E-F+\Delta F)-\lambda^*(r(E)-r(F-\Delta F)+1)=L(\lambda^*)$. Consider the largest $\lambda^*$ which allows $\Delta F=\emptyset$ to be an optimal solution. Such $\lambda^*$ would be the next breakpoint. For any $\Delta F$, $c(E-F+\Delta F)-\lambda^*(r(E)-r(F-\Delta F)+1)\geq c(E-F)-\lambda^*(r(E)-r(F)+1)$. Thus we have $\lambda^*\leq \frac{c(\Delta F)}{r(F)-r(F-\Delta F)}$. \end{itemize} (there is a $\pm1$ difference between principal partition and graph strength... but we dont care those $c\lambda$ terms since the difficult part is minimize $L(\lambda)$ for fixed $\lambda$)