This commit is contained in:
Yu Cong 2025-04-27 12:02:52 +08:00
parent 98f7757670
commit 6612a1d920
2 changed files with 1 additions and 1 deletions

BIN
main.pdf

Binary file not shown.

View File

@ -253,7 +253,7 @@ We want to prove something like tree packing theorem for \autoref{lp:dualcutint}
I believe the previous conjecture is not likely to be true.
\paragraph{Weight truncation} Assuming we know the optimal $\lambda$ to the LP dual, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$.
\paragraph{Weight truncation} Assuming we know the optimal $\lambda$ to the LP dual, \autoref{lp:dualcutint} in fact gives the idea of weight truncation. The capacity of each edge $e$ in the ``tree packing'' is $\min\{c(e)\lambda,w(e)\}$. Therefore, the optimum of \autoref{lp:dualcutint} is $\Lambda_{w_\tau}-b\lambda$, where $\Lambda_{w_\tau}$ is the fractional mincut on $G$ with weights $w_\tau$.
\paragraph{The optimal $\lambda$} Denote by $\lambda^*$ the optimal $\lambda$ that maximizes $L(\lambda)$. From the previous argument on the first segment of $L(\lambda)$ we know that $\lambda^* \geq \min \frac{w(C\setminus F)}{B-c(F)}$. Now assume $\lambda^* > \min_{c(F)\leq b} \frac{w(C\setminus F)}{b-c(F)}$. We have $\min w(C\setminus F)-\lambda^*(b-c(F))<w(C\setminus F)-\min_{c(F)\leq b} \frac{w(C\setminus F)}{b-c(F)}(b-c(F))=0$ since the optimum must be achieved by $F$ such that $0\leq b-c(F)$(the slope). The negative optimum of $L(\lambda)$ contradicts the fact that $L(0)=0$ and $L$ is concave. Hence, the optimal solution $\lambda^*$ is in the range $[\min\frac{w(C\setminus F)}{B-c(F)},\min_{c(F)\leq b}\frac{w(C\setminus F)}{b-c(F)}]$.