
Zarankiewicz problem / Finding colored K2,ℓ

congyu

July 29, 2025

Problem 1 (Zarankiewicz problem, algorithmic version...) Given a groundset U and a
collection S= {S1, . . . ,Sn} of n subsets of U. Let m=

∑

i∈[n] |Si|. Check if there exist k subsets
which have exactly ℓ elements in common.

α(G) is the arboricity of G. deg(v) is the degree of vertex v. N = |U |.
An equivalent formulation of Problem 1 on graph is the following,

Problem 2 (colored Kk,ℓ) Given a bipartite graph G = (V1 ⊔ V2, E) where V1, V2 and E repre-
sent elements in U, sets in S and element membership respectively. Color vertices in V1 red and
vertices in V2 blue. Check if there is an induced Kk,ℓ with k blue vertices and ℓ red vertices.

1 Existing algorithms

1.1 subcubic combinatorial alg for detecting induced C4

A recent paper https://arxiv.org/pdf/2507.18845v1.

2 Finding K2,ℓ

This has already been described in https://chaoxu.prof/posts/2019-01-21-high-degree-low-
degree-technique.html.

Theorem 2.1 ([1] section 4) There exists an algorithm which finds all K2,ℓ in G with time
complexity O(mα(G)).

Proof: The algorithm is described in Figure 2.1, This algorithm outputs all possible pairs
(v, w) such that v and w have exactly ℓ common neighbors. The total number of vertices
this algorithm visits is

∑

v[deg(v)+
∑

u∈N(v)(deg(u)−1)] = 2
∑

(u,v)∈E min{deg(u), deg(v)} ≤
4α(G)m. Thus this algorithm has running time O(mα(G)). □

Theorem 2.2 There exists an algorithm which solves Problem 1 and has complexity in O(n2ℓ)
when k = 2.

Proof: There is an algorithm for finding axis-parallel rectangles in O(m3/2) described in [3].
Now we show that this algorithm also finds colored K2,ℓ in bipartite graphs and has complexity
O(m+ n2) with better analysis. We need to construct a data structure for the algorithm in
Figure 2.2. We use a linked list to stored all elements in each Si. This takes O(M) times. For
finding all S j such that j < i and u ∈ S j, we store a linked list starting from each u and link
u with the element representing u in Sk’s linked list, where k is the largest value smaller
than i that Sk contains u. These links can be built using bucket sort in O(M) time.

For the complexity we notice that for each Si we visit at most O(nℓ) times since each
counter C[Si] is at most ℓ. Thus the total running time is O(M + n2ℓ) = O(n2ℓ). □

1

https://arxiv.org/pdf/2507.18845v1
https://chaoxu.prof/posts/2019-01-21-high-degree-low-degree-technique.html
https://chaoxu.prof/posts/2019-01-21-high-degree-low-degree-technique.html

sort vertices in G in such that deg(v1)≥ · · · ≥ deg(vn)
for i ∈ [n]:

for each vertex u ∈ N(vi):
let U[v] = ; for all v.
for each vertex w ∈ N(u) that is not vi:

add u to U[w].
for all vertex w ∈ V that is not vi:

if |U[w]|= ℓ:
output tuple (vi, w, U[w])

G = G − vi

Figure 2.1. An O(mα(G)) algorithm for finding all colored K2,ℓ

for i ∈ [n]:
for Sk ∈ S:

C[Sk]← 0
for u ∈ Si:

for all S j s.t. j < i and u ∈ S j:
C[S j]← C[S j] + 1
if C[S j]≥ ℓ:

output exist K2,ℓ

output no K2,ℓ

Figure 2.2. An O(n2ℓ) algorithm for checking existence of a K2,ℓ

There is actually a much simpler algorithm for the more general problem...

Theorem 2.3 There exist an algorithm which solves Problem 1 in O(ℓnk).

Proof: Create a array A of length
�n

k

�

, originally all zero. Note that the length of the array is
O(nk). Each element in the array corresponds to a combination of k sets out of S. We iterate
over all elements in U and find for each element e the set of positions in A for which the
corresponding set contains e. We add 1 to these positions. The process stops when there
is some A[i] ≥ ℓ. We visit every position in A at most ℓ times. Thus the running time is
O(ℓnk). □

Theorem 2.4 ([2]) There exist a constant c such that each n vertex graph with more than
cℓ1/2n3/2 must contain K2,ℓ.

Now we compose these algorithms to get a better running time for testing if a given
bipartite graph contains a colored K2,ℓ.

Lemma 2.5 If α(G)> t, then there is a subgraph H ⊆ G such that min{deg(v) : v ∈ V (H)} ≥
t.

Proof: H can be found through repeatedly removing the vertex with minimum degree in
G. Once the minimum degree is at least t, the subgraph induced by the remaining vertices
has the minimum degree at least t. Now we need to show that H is nonempty given that
α(G)> t. First observe that for any vertex v ∈ G if α(G−v)> degG(v), then α(G) = α(G−v).
Thus if H is empty we would have α(G)≤mindeg(v)≤ t, a contradiction. □

2

Theorem 2.6 There is an algorithm which finds K2,ℓ in time O(l1/3m4/3).

Proof: We compose previous algorithm using low-degree high-degree technique.

CHECKEXISTANCEK2,ℓ(G)
if t ≥ α(G)

use Algorithm2.1
else

find a subgraph H ⊆ G with min degree at least t
if c|V (H)|3/2 ≤ |E[H]|

there exists K2,ℓ ∈ H, return True
else

run Algorithm2.2 on H

Figure 2.3. An O(l1/3m4/3) algorithm for checking existence of a K2,ℓ

Note that while finding H we repeatedly delete the vertex with min degree. Meanwhile
we can check the existence of K2,ℓ which is not contained in H. □

References
[1] Norishige Chiba and Takao Nishizeki. Arboricity and Subgraph Listing Algorithms. SIAM

Journal on Computing, 14(1):210–223, February 1985. Publisher: Society for Industrial
and Applied Mathematics.

[2] Zoltán Füredi. New Asymptotics for Bipartite Turán Numbers. Journal of Combinatorial
Theory, Series A, 75(1):141–144, July 1996.

[3] Marc J. van Kreveld and Mark T. de Berg. Finding squares and rectangles in sets of
points. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, pages
341–355, Berlin, Heidelberg, 1990. Springer.

3

	Existing algorithms
	subcubic combinatorial alg for detecting induced
數琠C4
數琠

	Finding
數琠K2,
數琠

