Zarankiewicz problem / Finding colored K, ,

congyu
July 29, 2025

Problem 1 (Zarankiewicz problem, algorithmic version...) Given a groundset U and a
collection 8 ={S;,...,S,} of n subsets of U. Let m = Zie[n] |S;|. Check if there exist k subsets
which have exactly { elements in common.

a(G) is the arboricity of G. deg(v) is the degree of vertex v. N = |U]|.
An equivalent formulation of Problem 1 on graph is the following,

Problem 2 (colored K, ;) Given a bipartite graph G = (V, UV,, E) where V,V, and E repre-
sent elements in U, sets in & and element membership respectively. Color vertices in V, red and
vertices in V, blue. Check if there is an induced K, , with k blue vertices and { red vertices.

1 Existing algorithms

1.1 subcubic combinatorial alg for detecting induced C,
A recent paper https://arxiv.org/pdf/2507.18845v1.

2 Finding K,

This has already been described in https://chaoxu.prof/posts/2019-01-21-high-degree-low-
degree-technique.html.

Theorem 2.1 ([1] section 4) There exists an algorithm which finds all K, , in G with time
complexity O(ma(G)).

Proof: The algorithm is described in Figure 2.1, This algorithm outputs all possible pairs
(v,w) such that v and w have exactly £ common neighbors. The total number of vertices
this algorithm visits is D] [deg(v)+ 2] cy(,)(deg()—1)1 =23, . min{deg(u), deg(v)} <
4a(G)m. Thus this algorithm has running time O(ma(G)). |

Theorem 2.2 There exists an algorithm which solves Problem 1 and has complexity in O(n*()
when k = 2.

Proof: There is an algorithm for finding axis-parallel rectangles in O(m®?) described in [3].
Now we show that this algorithm also finds colored K, , in bipartite graphs and has complexity
O(m + n?) with better analysis. We need to construct a data structure for the algorithm in
Figure 2.2. We use a linked list to stored all elements in each S;. This takes O(M) times. For
finding all S; such that j <i and u € S;, we store a linked list starting from each u and link
u with the element representing u in S;’s linked list, where k is the largest value smaller
than i that S, contains u. These links can be built using bucket sort in O(M) time.

For the complexity we notice that for each S; we visit at most O(nf) times since each
counter C[S,] is at most £. Thus the total running time is O(M + n?¢) = O(n?(). O

1

https://arxiv.org/pdf/2507.18845v1
https://chaoxu.prof/posts/2019-01-21-high-degree-low-degree-technique.html
https://chaoxu.prof/posts/2019-01-21-high-degree-low-degree-technique.html

sort vertices in G in such that deg(v;) > --- > deg(v,)
forie[n]:
for each vertex u € N(v;):
let U[v] =0 for all v.
for each vertex w € N(u) that is not v;:
add u to U[w].
for all vertex w € V that is not v;:

if |[U[w]|=¢:
output tuple (v;, w,U[w])

Figure 2.1. An O(ma(G)) algorithm for finding all colored K, ,

forie[n]:
for S, € 8:
C[S¢] <0
forues;:
forall S;s.t. j<iandu€S;:
C[S;] < C[S;]+1
if C[S;]=¢:
output exist K, ,
output no K, ,

Figure 2.2. An O(n?{) algorithm for checking existence of a Ky

There is actually a much simpler algorithm for the more general problem...

Theorem 2.3 There exist an algorithm which solves Problem 1 in O(£n*).

Proof: Create a array A of length (Z), originally all zero. Note that the length of the array is
O(n*). Each element in the array corresponds to a combination of k sets out of 8. We iterate
over all elements in U and find for each element e the set of positions in A for which the
corresponding set contains e. We add 1 to these positions. The process stops when there
is some A[i] > . We visit every position in A at most £ times. Thus the running time is
o(4n"). O

Theorem 2.4 ([2]) There exist a constant ¢ such that each n vertex graph with more than
c0'2n®? must contain K.

Now we compose these algorithms to get a better running time for testing if a given
bipartite graph contains a colored K, ,.

Lemma 2.5 If a(G) > t, then there is a subgraph H C G such that min{deg(v):v € V(H)} >
t.

Proof: H can be found through repeatedly removing the vertex with minimum degree in
G. Once the minimum degree is at least ¢, the subgraph induced by the remaining vertices
has the minimum degree at least t. Now we need to show that H is nonempty given that
a(G) > t. First observe that for any vertex v € G if a(G—v) > deg;(v), then a(G) = a(G—V).
Thus if H is empty we would have a(G) < mindeg(v) < t, a contradiction. m|

2

Theorem 2.6 There is an algorithm which finds K, , in time O(1'/*m*/®).

Proof: We compose previous algorithm using low-degree high-degree technique.

CHECKEXISTANCEK, ;(G)
if t > a(G)
use Algorithm2.1
else
find a subgraph H C G with min degree at least t
if c|V(H)P*? < |E[H]|
there exists K, , € H, return True
else
run Algorithm2.2 on H

Figure 2.3. An O(1'/°m*?) algorithm for checking existence of a K,

Note that while finding H we repeatedly delete the vertex with min degree. Meanwhile
we can check the existence of K, , which is not contained in H. a

References

[1] Norishige Chiba and Takao Nishizeki. Arboricity and Subgraph Listing Algorithms. SIAM

Journal on Computing, 14(1):210-223, February 1985. Publisher: Society for Industrial
and Applied Mathematics.

[2] Zoltan Fiiredi. New Asymptotics for Bipartite Turdn Numbers. Journal of Combinatorial
Theory, Series A, 75(1):141-144, July 1996.

[3] Marc J. van Kreveld and Mark T. de Berg. Finding squares and rectangles in sets of
points. In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, pages
341-355, Berlin, Heidelberg, 1990. Springer.

	Existing algorithms
	subcubic combinatorial alg for detecting induced
數琠C4
數琠

	Finding
數琠K2,
數琠

