Exercises in Sariel Har-Peled's Geometric Approximation Algorithms

For errata and more stuff, see https://sarielhp.org/book/ Note that unless specifically stated, we always consider the RAM model.

1 Grid

Ex 1.1 Let P be a max cardinality point set contained in the d-dimensional unit hypercube such that the smallest distance of point pairs in P is 1. Prove that

$$(\left\lfloor \sqrt{d} \right\rfloor + 1)^d \le |P| \le (\left\lceil \sqrt{d} \right\rceil + 1)^d.$$

hmm... the first exercise in this book is wrong. See https://sarielhp.org/book/errata.pdf. The stated lowerbound is actually an upperbound.

Proof: We evenly partition the [0,1] interval into $m=\left(\left\lfloor\sqrt{d}\right\rfloor+1\right)$ small segments for each of the d axes. The unit hypercube is partitioned into m^d cells. The length of each cell's diagonal is $\sqrt{\frac{d}{m^2}}<1$. Thus there is at most one point of P in each cell and there are $\left(\left\lfloor\sqrt{d}\right\rfloor+1\right)^d$ cells.

For lowerbound, one can construct a solution of size 2^d by selecting vertices of the hypercube. For sufficient large d one can find a solution of size $(\sqrt{d}/5)^d$. Let point set P be the optimal solution and let n = |P|. We place a d-dimensional unit sphere around each point of P. These n spheres must cover the unit hypercube since otherwise we can add more points into P. Thus one has $n \text{ vol}(1b^d) \ge 1$.

$$n \ge 1/\operatorname{vol}(1b^d)$$

$$= \frac{\Gamma(d/2+1)}{\pi^{d/2}}$$

$$\ge \sqrt{2\pi/(d/2+1)}(\frac{\sqrt{d}}{\sqrt{2e\pi}})^d$$

The last line is greater than $(\sqrt{d}/5)^d$ for large enough d.

Ex 1.2 Compute clustering radius. Let C and P be two given set of points such that k = |C| and n = |P|. Define the covering radius of P by C as $r = \max_{p \in P} \min_{c \in C} ||p - c||$.

П

¹Exercise 1.1 (C) in https://sarielhp.org/book/chapters/min_disk.pdf

- 1. find an $O(n + k \log n)$ expected time alg that outputs α such that $\alpha \le r \le 10\alpha$.
- 2. for prescribed $\varepsilon > 0$, find an $O(n + k\varepsilon^{-2} \log n)$ expected time alg that outputs α s.t. $\alpha < r < (1 + \varepsilon)\alpha$.

Not in the book

Problem 1 (d**-dimensional rectangle stabbing [GIKO2])** Given a set R of n axis-parallel rectangles and a set H of axis-parallel d dimensional hyperplanes, find the minimum subset of H such that every rectangle is stabbed by at least one hyperplane in the subset.

This problem is NP-hard even for the 2D case. There is a LP rounding method which gives a d-approximation for dimension d. Let $K_i \subset \mathcal{H}$ be the set of hyperplanes that are orthogonal to the ith axis. For a rectangle $r \in R$, denote by K_i^r the set of hyperplanes in K_i that stab r. Consider the following LP.

min
$$\sum_{H \in \mathcal{H}} x_H$$
s.t.
$$\sum_{i \in [d]} \sum_{H \in K_i^r} x_H \ge 1 \quad \forall r \in R$$

$$x_H \ge 0 \quad \forall H \in \mathcal{H}$$

Let $\{x_H^*: H \in \mathcal{H}\}$ be the optimal solution to the above LP. For each r, there must be some $i \in [d]$ such that $\sum_{H \in \mathcal{K}_i^r} x_H^* \geq 1/d$. Denote such a set for rectangle r by \mathcal{K}_*^r . Suppose that we find a subset $\mathcal{H}^{int} \subset \mathcal{H}$ and define a integral solution $\{y_H = 1\}_{H \in \mathcal{H}^{int}} \cup \{y_H = 0\}_{H \notin \mathcal{H}^{int}}$ such that $\sum_{H \in \mathcal{K}_*^r} \geq 1$ for each rectangle r. In other words, we restrict the solution such that every rectangle r is stabbed by hyperplanes in \mathcal{K}_*^r .

One nice property of this restriction is that now the problem becomes independent for each dimension. We assign to each rectangle r a dimension i such that $\sum_{H \in \mathcal{K}_i^r} x_H^* \geq 1/d$. This assignment indicates a partition $\{R_i\}_{i \in [d]}$ of R. We want to solve the following IP for dimension $i \in [d]$.

$$IP_{i} = \min \sum_{H \in K_{i}} x_{H}$$

$$s.t. \sum_{H \in K_{i}^{r}} x_{H} \ge 1 \qquad \forall r \in R_{i}$$

$$x_{H} \in \{0, 1\} \quad \forall H \in K_{i}$$

Another nice property is that the constraint matrix is TUM since one can sort the hyperplanes in K_i by their intersection with the *i*th axis and see that element 1's locate consecutively in each row in the constraint matrix. Hence, the linear relaxation of IP_i (denoted by LP_i) is integral and we can solve IP_i in polynomial time.

Now we show connections between x^* and solutions of IP_i . Let $x^*|_{K_i}$ be the optimal solution to the rectangle stabbing LP restricted to hyperplanes in K_i . We also have $\sum_{i \in [d]} \mathsf{OPT}(IP_i) \leq d \sum_H x_H^*$ since $dx^*|_{K_i}$ is a feasible solution to LP_i . Then the d-integrality

gap follows from the fact that the union of optimal solutions to IP_i is a feasible solution to the rectangle stabbing problem.

References

[GIK02] Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant Ratio Approximation Algorithms for the Rectangle Stabbing Problem and the Rectilinear Partitioning Problem. *Journal of Algorithms*, 43(1):138–152, April 2002.