diff --git a/main.tex b/main.tex index 4471013..f011ee9 100644 --- a/main.tex +++ b/main.tex @@ -14,6 +14,8 @@ For errata and more stuff, see \url{https://sarielhp.org/book/} +Note that unless specifically stated, we always consider the RAM model. + \section{Grid} \begin{exercise}\label{ex1.1} Let $P$ be a max cardinality point set contained in the $d$-dimensional unit hypercube such that the smallest distance of point pairs in $P$ is 1. Prove that @@ -46,4 +48,23 @@ Let $C$ and $P$ be two given set of points such that $k=|C|$ and $n=|P|$. Define \end{exercise} +\section*{Not in the book} +\begin{problem}[$d$-dimensional rectangle stabbing \cite{gaur_constant_2002}] +Given a set $R$ of $n$ axis-parallel rectangles and a set $L$ of axis-parallel real lines, find the minimum subset of $L$ such that every rectangle is stabbed by at least one line in the subset. +\end{problem} +This problem is NP-hard even for the 2D case. There is a LP rounding method which gives a $d$-approximation. Let $K_i$ be the subset of $d$th-axis parallel lines in $L$. For a rectangle $r$, denote by $K_i[r]$ the set of lines in $K_i$ that stab $r$. Consider the following LP. + +\begin{equation*} +\begin{aligned} +\min& & \sum_{i\in [d]} \sum_{\ell \in K_i} x_\ell& & & \\ +s.t.& & \sum_{i\in [d]} \sum_{\ell \in K_i[r]} x_\ell&\geq 1 & &\forall r\in R\\ + & & x_\ell&\geq 0 & &\forall \ell\in L +\end{aligned} +\end{equation*} + +Let $\set{x^*_\ell: \ell\in L}$ be the optimal solution to the above LP. For each $r$, there must be some $i\in [d]$ such that $\sum_{\ell \in K_i[r]}x^*_\ell \geq 1/d$. + +\bibliographystyle{alpha} +\bibliography{ref} + \end{document} diff --git a/ref.bib b/ref.bib new file mode 100644 index 0000000..3e509a1 --- /dev/null +++ b/ref.bib @@ -0,0 +1,16 @@ + +@article{gaur_constant_2002, + title = {Constant {Ratio} {Approximation} {Algorithms} for the {Rectangle} {Stabbing} {Problem} and the {Rectilinear} {Partitioning} {Problem}}, + volume = {43}, + issn = {0196-6774}, + url = {https://www.sciencedirect.com/science/article/pii/S0196677402912216}, + doi = {10.1006/jagm.2002.1221}, + number = {1}, + urldate = {2025-08-16}, + journal = {Journal of Algorithms}, + author = {Gaur, Daya Ram and Ibaraki, Toshihide and Krishnamurti, Ramesh}, + month = apr, + year = {2002}, + keywords = {approximation algorithms, combinatorial optimization, rectangle stabbing, rectilinear partitioning}, + pages = {138--152}, +}