mirror of
https://github.com/congyu711/BeamerTheme.git
synced 2025-07-12 08:31:31 +08:00
103 lines
1.8 KiB
TeX
103 lines
1.8 KiB
TeX
\documentclass{beamer}
|
|
|
|
\input{template_short.tex}
|
|
|
|
%% use one of the two below
|
|
% \colorlet{main}{red!50!black}
|
|
% \colorlet{main}{purple}
|
|
|
|
%-------------------main body-------------------------%
|
|
|
|
\author{Your Name}
|
|
\title{Presentation Title}
|
|
\date{January 1, 2018}
|
|
|
|
\begin{document}
|
|
|
|
\frame[plain]{\titlepage}
|
|
|
|
\begin{frame}
|
|
\frametitle{Outline}
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
\section{Page Title}
|
|
|
|
\begin{frame}
|
|
\frametitle{Page Title}
|
|
|
|
TeX - LaTeX Stack Exchange is a question and answer site for users of TeX, LaTeX, ConTeXt, and related typesetting systems.
|
|
|
|
\vspace{0.4cm}
|
|
|
|
unordered list below
|
|
|
|
\begin{itemize}
|
|
\item The first item
|
|
\item The second item
|
|
\item The third item
|
|
\item The fourth item
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
\section{Display Theorem}
|
|
|
|
\subsection{first subsection}
|
|
|
|
\subsection{second subsection}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Display Theorem}
|
|
\begin{theorem}
|
|
$1 + 2 = 3$
|
|
\end{theorem}
|
|
\begin{proof}
|
|
$$1 + 1 = 2$$
|
|
$$1 + 1 + 1 = 3$$
|
|
\end{proof}
|
|
\end{frame}
|
|
|
|
\section{Sample frame title}
|
|
|
|
\begin{frame}
|
|
\frametitle{Sample frame title}
|
|
This is a text in second frame.
|
|
For the sake of showing an example.
|
|
|
|
\begin{itemize}
|
|
\item Text visible on slide 1
|
|
\item Text visible on slide 2
|
|
\item Text visible on slide 3
|
|
\end{itemize}
|
|
|
|
\vspace{0.3cm}
|
|
|
|
another example
|
|
|
|
\begin{itemize}\itemsep0em
|
|
\item Text visible on slide 1
|
|
\item Text visible on slide 2
|
|
\item Text visible on slide 3
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\begin{proof}
|
|
$$
|
|
\frac{1}{\displaystyle 1+
|
|
\frac{1}{\displaystyle 2+
|
|
\frac{1}{\displaystyle 3+x}}} +
|
|
\frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}
|
|
$$
|
|
$$\int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$$
|
|
\begin{equation} x=y+3 \label{eq:xdef}
|
|
\end{equation}
|
|
In equation (\ref{eq:xdef}) we saw $\dots$
|
|
\end{proof}
|
|
\end{frame}
|
|
|
|
|
|
\end{document} |