\definecolor{lightblue}{rgb}{0.67,0.87,0.9} %------------------------------------------------ \section{Motivation \& References} %------------------------------------------------ \begin{frame}{Motivation \& References} Motivation: Reachability and Büchi games are important in system verification and testing. Computing the winning set of Büchi games is a central problem in computer aided verification with a large number of applications.\\~ References: \\~ \footnotesize{ \begin{thebibliography}{99} \bibitem[Smith, 2012]{p1} John Smith (2012) \newblock Title of the publication \newblock \emph{Journal Name} 12(3), 45 -- 678. \end{thebibliography} } \end{frame} \section{Reachability Game} \begin{frame}{Reachability Game} A reachability game is a 2-player (namely P0 and P1) game on a directed finite graph.\\~ Game graph: directed graph $G(\{V_0\cup V_1\},E)$.($\{V_0,V_1\}$is a partition of $V$) \\~ Target set: target set is $T\subseteq \{V_0\cup V_1\}$.\\~ A play $P$ is a (finite or infinite) path in the game graph beginning at the initial vertex $s$. If $v\in V_0$, P0 moves along an outgoing edge of v. Otherwise, P1 takes the move.\\~ Definition of winning: P0 wins if $T\cap P \neq \emptyset$, otherwise P1 wins.\\~ Memoryless strategy: a strategy for P0 is a mapping $\alpha : V_0 \rightarrow V$ that defines how P0 should extend the current play. \end{frame} %frame 5 \begin{frame}{Example for Reachability Game} Rectangle vertices are in $V_1$, circles are in $V_0$;\\ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~ \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.45\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \node[shape=circle,draw=red] (1) at (0,0) {1}; \node[shape=rectangle,draw=black] (2) at (0,4) {2}; \node[shape=rectangle,draw=black] (3) at (2.5,4) {3}; \node[shape=circle,draw=black] (4) at (5,0) {4}; \node[shape=circle,draw=blue] (5) at (2.5,0) {5}; \node[shape=rectangle,draw=black] (6) at (5,4) {6} ; \path [->] (2) edge[thick] node[] {} (1); \path [->] (2) edge[thick] node[] {} (4); \path [->] (6) edge[thick,bend left=15] node[] {} (4); \path [->] (4) edge[thick,bend left=15] node[] {} (6); \path [->] (5) edge[thick,bend left=15] node[] {} (6); \path [->] (6) edge[thick,bend right=15] node[] {} (1); \path [->] (5) edge[thick] node[] {} (3); \path [->] (3) edge[thick,bend right=20] node[] {} (1); \end{tikzpicture} \end{adjustbox} \column{.5\textwidth} % Right column and width A winning play for P0 is $\{5,3,1\}$\\~ \end{columns} \end{frame} %frame 6 \begin{frame}{Algorithm for Reachability Game} \begin{figure} \centering \begin{adjustbox}{width=0.3\textwidth} \begin{tikzpicture} % \draw (0,0) node {}; \draw[fill=lightblue] (6,0) ellipse (28pt and 20pt); \draw[] (7,0) ellipse (58pt and 40pt); \node[shape=circle,draw=lightblue](t) at (6,0) {$T$}; \node[shape=circle,draw=white](o) at (7,2.4) {}; \node[shape=circle,draw=black] (1) at (7.8,0.5) {}; \node[shape=rectangle,draw=black] (2) at (8.1,-0.5) {}; \path [->] (1) edge[thick] node[] {} (t); \path [->] (1) edge[thick] node[] {} (o); \path [->] (2) edge[thick,bend left=15] node[] {} (t); \path [->] (2) edge[thick,bend right=15] node[] {} (t); \node[shape=circle,draw opacity=0](txt) at (7,-1) {Rank 1}; \end{tikzpicture} \end{adjustbox} \end{figure} \begin{itemize} \item if $s$ is in $T$, P0 wins; \item if $s\in V_0$ and $s$ has at least one outgoing edge to $u\in T$, P0 wins in one step; \item if $s\in V_1$ and all of $s$'s outgoing edges go to $u\in T$, P0 wins in one step; \end{itemize} \end{frame} %frame 7 \begin{frame}{Algorithm for Reachability Game} We defined Rank 0 and Rank 1 already, now we define Rank i.\\ $R_i:=\{v\in V|$ P0 can force a visit from v to a vertex in $T$ in i steps$\}$\\~ Define Reachability set of $T$ for P0, $\Reach(T,0) := \bigcup_{i=1}^{n-1}R_i$\\~ A vertex $v\in R_i$: \\~ if $v \in V_0$ and there is an edge $e(v,u)\quad u\in R_{i-1}$;\\~ if $v \in V_1$ and for every edge $e(v,u)$ we have $u\in \bigcup_{j=0}^{i-1} R_j$;\\ \end{frame} %frame 8 \begin{frame}{Algorithm for Reachability Game} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.35\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \node[shape=circle,draw=red] (1) at (0,0) {1}; \node[shape=circle,draw=red] (2) at (2,0) {2}; \node[shape=circle,draw=blue] (3) at (4,0) {3}; \node[shape=rectangle,draw=black] (4) at (0,3) {4}; \node[shape=rectangle,draw=black] (5) at (2,3) {5}; \node[shape=rectangle,draw=black] (6) at (4,3) {6} ; \path [->] (3) edge[thick] node[] {} (6); \path [->] (3) edge[thick] node[] {} (5); \path [->] (5) edge[thick] node[] {} (1); \path [->] (5) edge[thick] node[] {} (2); \path [->] (4) edge[thick] node[] {} (1); \path [->] (4) edge[thick] node[] {} (3); \path [->] (6) edge[thick, bend right=30] node[] {} (4); \end{tikzpicture} \end{adjustbox} \column{.6\textwidth} % Right column and width \begin{itemize} \item $R_0=\{1,2\}$; \item $R_1=\{5\}$; \item $R_2=\{3\}$; \item $R_3=\{4\}$; \item $R_4=\{6\}$; \end{itemize} For simplicity, denote $u\in R_k$ by Rank[$u$]=k. \end{columns} \end{frame} % frame 9 \begin{frame}{An O(m) Algorithm for Reachability Game} \begin{algorithm}[H] \scriptsize \SetAlgoLined \KwData{game graph $G$, target set $T$} \KwResult{Rank[$|V|$]} Q:= an empty queue\; Rank[$|V|$],count[$|V|$]:= all 0s array\; Q.push({T})\; \While{Q is not empty}{ $u$:=Q.front,Q.pop\; \For{$e(v,u)\in E$}{ \uIf{$v\in V_0$ and $v$ has not been visited} {Rank[$v$]:=Rank[$u$]+1; Q.push($\{v\}$)} \ElseIf{$v\in V_1$}{ count[v]:=count[v]+1\; \lIf{count[v]=Out Degree of $v$}{ Rank[$v$]:=Rank[$u$]+1; Q.push($\{v\}$) } } } } \caption{Reachability for P0} \end{algorithm} Every edge is used at most once. \end{frame} %frame 10 \begin{frame}{Type} $T_1,T_2,...,T_k$ are disjoint subsets of $V$, now we want to compute Reachability of each one of them.\\~\\ \begin{columns} \column{.45\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw (0,0) node {}; %\draw[fill=lightblue] (1,0) ellipse (28pt and 20pt); \draw[] (2,1) ellipse (78pt and 60pt); \node[shape=circle,draw=lightblue,fill =lightblue](t) at (1,0) {$T_1$}; \node[shape=circle,draw=lightblue,fill =lightblue](t) at (2.2,0) {$T_2$}; \node[shape=circle,draw=lightblue,fill =lightblue](t) at (3.4,0) {$T_3$}; % \node[shape=circle,draw=white](o) at (2,2.4) {}; %\node[shape=circle,draw=black] (1) at (2.8,0.5) {}; % \node[shape=rectangle,draw=black] (2) at (3.1,-0.5) {}; \end{tikzpicture} \end{adjustbox} \column{.5\textwidth} % Right column and width \textbf{Definition} A type of vertex $x$ is a tuple $(y_1, \ldots, y_k)$, where each $x_i \in \{0,1\}$, such that $y_i=1$ iff $x$ is in $\Reach (T_i, 0)$. \end{columns} \end{frame} %frame 11 \begin{frame}{Compute Types} \begin{itemize} \item Run reachability algorithm for every $T_i$, $O(km)$; \item Compute simultaneously. % \begin{itemize} % \item similar to Algorithm 1, updating Ranks is replaced with updating Types. % \item one update needs $O(k)$, $O(m)$ times of update is needed. $O(km)$ % \end{itemize} \item Can it be done in linear or nearly linear time? \end{itemize} \end{frame} %frame 12 \begin{frame}{Minimum Base} The minimum base of $T$ is the minimum subset of $T$ which can generate the same Reachability set as $T$.\\~ Computing the minimum base is NP-hard.\\~ \begin{problem}[Set cover] Given a set $S$ of n elements, a collections $S_1,S_2,...,S_m$ of subsets of $S$, and a number K, does there exists a collection of at most k of these sets whose union is equal to all of $S$. \end{problem} \end{frame} %frame 13 \begin{frame}{Minimum Base} \textbf{Proof}:\\ We prove that the decision problem for minimum base is NP-Complete.\\ The decision problem $L$ is can we find a base with at most k vertices.\\ \begin{enumerate} \item $L$ is in NP. \item set cover problem(which is NP-Complete) can be reduced to $L$ in polynomial time. \begin{itemize} \item Construct a Reachability game graph $G(V_0,E)$. There are $m$ vertices in $T$ representing $m$ subsets in set cover problem, $n$ vertices not in $T$ representing $n$ elements in $S$. \item If subset $S_i$ contains element $x_j$, connect an edge from vertex representing $S_i$ to vertex representing $x_j$ in $T$. \end{itemize} \end{enumerate} %So $L$ is NP-Complete. The minimum base problem is NP-Hard. \end{frame} \begin{frame}{Minimum Base} \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw (0,0) node {}; \node[shape=circle,draw=lightblue,fill =lightblue](t1) at (4,0) {$S_1$}; \node[shape=circle,draw=lightblue,fill =lightblue](t2) at (5.2,0) {$S_2$}; \node[shape=circle,draw=lightblue,fill =lightblue](t3) at (6.4,0) {$S_3$}; \node[shape=circle,draw=black](x1) at (3,2) {$x_1$}; \node[shape=circle,draw=black](x2) at (5,2) {$x_2$}; \node[shape=circle,draw=black](x3) at (7,2) {$x_3$}; \node[shape=circle,draw=black](x4) at (9,2) {$\ldots$}; \path [->] (x1) edge[thick] node[] {} (t1); \path [->] (x2) edge[thick] node[] {} (t1); \path [->] (x1) edge[thick] node[] {} (t2); \path [->] (x3) edge[thick] node[] {} (t2); \end{tikzpicture} \end{adjustbox}\\ $S_1=\{x_1,x_2\}$\\ $S_2=\{x_1,x_3\}$\\~ So $L$ is NP-Complete. The minimum base problem is NP-Hard. \end{frame} \section{Büchi Game} %frame 14 \begin{frame}{Büchi Game} \begin{definition}[Büchi Game] A \textbf{Büchi game} is a game $\mathcal{G}=(G,s,T)$ where $G$ is the Reachability game graph, $V_i$ is an initial vertex, $T\subseteq V$ is the target set as in Reachability game.\\~ Play: The definition of play in Büchi Game is the same as in Reachability game.\\~ Definition of winning: We assume the play $P$ is infinite here. if there exists infinite many vertices $v\in T$ in $P$, P0 wins. Otherwise P1 wins. \end{definition} \end{frame} %frame 15 \begin{frame}{Example for Büchi Game} \begin{columns} \column{0.45\textwidth} \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \node[shape=rectangle,draw=black] (1) at (0,0) {1}; \node[shape=circle,draw=black] (2) at (1.5,0) {2}; \node[shape=circle,draw=black] (3) at (4.5,0) {3}; \node[shape=circle,draw=black] (4) at (0,3) {4}; \node[shape=rectangle,draw=red] (5) at (1.5,3) {5}; \node[shape=rectangle,draw=black] (6) at (3,3) {6} ; \node[shape=rectangle,draw=red] (7) at (4.5,3) {7} ; \path [->] (4) edge[thick] node[] {} (5); \path [->] (5) edge[thick] node[] {} (6); \path [->] (6) edge[thick] node[] {} (7); \path [->] (3) edge[thick] node[] {} (7); \path [->] (2) edge[thick] node[] {} (3); \path [->] (1) edge[thick] node[] {} (2); \path [->] (1) edge[thick] node[] {} (5); \path [->] (5) edge[thick] node[] {} (2); \path [->] (6) edge[thick] node[] {} (2); \path [->] (7) edge[thick] node[] {} (2); \path [->] (2) edge[thick,bend right=15] node[] {} (7); \end{tikzpicture} \end{adjustbox} \column{0.5\textwidth} % P0 can force a visit from any vertex in $S=\{2,3,5,6,7\}$ to any other vertex in $S$.\\~ P0 is always winning on this game graph. \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 1} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.6\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw[thick, fill opacity=0.3] (0,-2) -- (0,2) -- (8,2) -- (8,-2) -- cycle; % G \draw[thick,fill=blue, fill opacity=0.3] (0,-2) -- (0,2) -- (2,2) -- (2,-2) -- cycle; % T \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (6,2) -- (6,-2) -- cycle; % reach \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3) {$G$}; \node[shape=circle,draw opacity=0](txt) at (1,-1.7) {$T$}; \node[shape=circle,draw opacity=0](txt) at (4,1.7) {$\Reach(T,0)$}; \end{tikzpicture} \end{adjustbox} \column{.35\textwidth} % Right column and width If $v\notin \Reach(T,0)\cup T$, $v$ can not reach $T$, P0 will lose.\\~ Some vertices in $T$ can not reach $\Reach(T,0)\cup T$, P0 will also lose on these vertices. \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 1} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.6\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw[thick, fill opacity=0.3] (0,-2) -- (0,2) -- (8,2) -- (8,-2) -- cycle; % G \draw[thick,fill=blue, fill opacity=0.3] (0,-2) -- (0,2) -- (2,2) -- (2,-2) -- cycle; % T \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (6,2) -- (6,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (0,1) -- (0,2) -- (6,2) -- (6,1) -- cycle; % reach \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3) {$G$}; \node[shape=circle,draw opacity=0](txt) at (1,-1.7) {$T_2$}; \node[shape=circle,draw opacity=0](txt) at (1,1.7) {$T_1$}; \node[shape=circle,draw opacity=0](txt) at (4,-1.7) {$\Reach(T_2,0)$}; \node[shape=circle,draw opacity=0](txt) at (4,1.7) {$\Reach(T,0)\backslash \Reach(T_2,0)$}; \end{tikzpicture} \end{adjustbox} \column{.37\textwidth} % Right column and width $T_1=\{v\in T|v$ can't reach $T\cup \Reach(T,0)\}$\\~ Some vertices in $T_2$ can only reach $\Reach(T,0)\backslash \Reach(T_2,0)$\\~ We find $T_3=\{v\in T_2|v$ can't reach $T_2\cup \Reach(T_2,0)\}$ \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 1} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.6\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw[thick, fill opacity=0.3] (0,-2) -- (0,2) -- (8,2) -- (8,-2) -- cycle; % G \draw[thick,fill=blue, fill opacity=0.3] (0,-2) -- (0,2) -- (2,2) -- (2,-2) -- cycle; % T \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (6,2) -- (6,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (0,1) -- (0,2) -- (6,2) -- (6,1) -- cycle; \draw[thick,fill=red, fill opacity=0.3] (0,0.5) -- (0,1) -- (6,1) -- (6,0.5) -- cycle; \draw[thick,fill=red, fill opacity=0.3] (0,0.25) -- (0,0.5) -- (6,0.5) -- (6,0.25) -- cycle; \draw[thick,fill=red, fill opacity=0.3] (0,0.125) -- (0,0.25) -- (6,0.25) -- (6,0.125) -- cycle; \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3) {$G$}; \node[shape=circle,draw opacity=0](txt) at (1,1.7) {$T_1$}; \node[shape=circle,draw opacity=0](txt) at (4,1.7) {$\Reach(T,0)\backslash \Reach(T_2,0)$}; \node[shape=circle,draw opacity=0](txt) at (2.1,-1.5) {Winning set for P0}; \end{tikzpicture} \end{adjustbox} \column{.35\textwidth} % Right column and width We repeat this process until $T_k$ does not shrink.\\~ The remaining part of $T_k\cup \Reach(T_k,0)$ is the winning set for P0. \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 1} \begin{itemize} \item How to find $T_1$\\ $T_1=\{v\in T|v$ can't reach $T\cup \Reach(T,0)\}$\\ $T_1=\{v\in T|v$ can only reach $V\backslash \{T\cup \Reach(T,0)\}\}$\\ P1 wants to reach $V\backslash \{T\cup \Reach(T,0)\}\}$, P0 tries to avoid $V\backslash \{T\cup \Reach(T,0)\}\}$.\\ compute $\Reach(V\backslash \{T\cup \Reach(T,0)\}\},1)$ \item Time complexity\\ $O(m)$ to find $T_i$, at most $O(n)$ times. Worst-case $O(nm)$. \end{itemize} \end{frame} \begin{frame}{Algorithm for Büchi Game 2} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.6\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw[thick, fill opacity=0.3] (0,-2) -- (0,2) -- (8,2) -- (8,-2) -- cycle; % G \draw[thick,fill=blue, fill opacity=0.3] (0,-2) -- (0,2) -- (2,2) -- (2,-2) -- cycle; % T \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (5,2) -- (5,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (0,-2) -- (0,-0.5) -- (5,-0.5) -- (5,-2) -- cycle; % reach \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3) {$G$}; \node[shape=circle,draw opacity=0](txt) at (1,1.7) {$T$}; \node[shape=circle,draw opacity=0](txt) at (6.5,0) {$C_0\cup C_1$}; \node[shape=circle,draw opacity=0](txt) at (2,-1.7) {$\Reach(C_0\cup C_1,1)$}; \end{tikzpicture} \end{adjustbox} \column{.35\textwidth} % Right column and width Compute $C_0$ and $C_1$.\\~ $C_0$ is a set of vertices in $V_0\backslash T$ having all outgoing edges to vertices in $V\backslash T$.\\ $C_1$ is a set of vertices in $V_1\backslash T$ having an outgoing edge to vertices in $V\backslash T$.\\~ Compute $\Reach(C_0\cup C_1,1)$ \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 2} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.6\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw[thick, fill opacity=0.3] (0,-2) -- (0,2) -- (8,2) -- (8,-2) -- cycle; % G \draw[thick,fill=blue, fill opacity=0.3] (0,-2) -- (0,2) -- (2,2) -- (2,-2) -- cycle; % T \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (5,2) -- (5,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (0,-2) -- (0,-0.5) -- (5,-0.5) -- (5,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (2,-2) -- (2,-0.5) -- (3,-0.5) -- (3,-2) -- cycle; % reach \draw[thick,fill=purple, fill opacity=0.3] (3,-2) -- (3,-1) -- (8,-1) -- (8,-2) -- cycle; % reach \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3) {$G$}; \node[shape=circle,draw opacity=0](txt) at (1,1.7) {$T$}; \node[shape=circle,draw opacity=0](txt) at (6.5,0) {$C_0\cup C_1$}; \node[shape=circle,draw opacity=0](txt) at (1,-1.7) {$T_1$}; \node[shape=circle,draw opacity=0](txt) at (2.5,-1.7) {$D$}; \node[shape=circle,draw opacity=0](txt) at (5,-1.7) {$\Reach(T_1\cup D,0)$}; \node[shape=circle,draw opacity=0](txt) at (4,-0.75) {$E$}; \end{tikzpicture} \end{adjustbox} \column{.39\textwidth} % Right column and width Some vertices in $\Reach(C_0\cup C_1,1)$ can "reach" $T_1$.($D$ in the left picture)\\~ Compute $\Reach(T_1\cup D,0)$.\\~ $E=\Reach(C_0\cup C_1,1)\backslash \{T_1\cup D \cup \Reach(T_1\cup D,0)\}$\\~ $\{E\cup C_0\cup C_1\}\backslash \Reach(T_1\cup D,0)$ is the set of vertices which can't "reach" $T$. \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 2} \begin{columns}[c] % The "c" option specifies centered vertical alignment while the "t" option is used for top vertical alignment \column{.6\textwidth} % Left column and width \begin{adjustbox}{width=\textwidth} \begin{tikzpicture} \draw[thick, fill opacity=0.3] (0,-2) -- (0,2) -- (8,2) -- (8,-2) -- cycle; % G \draw[thick,fill=blue, fill opacity=0.3] (0,-2) -- (0,2) -- (2,2) -- (2,-2) -- cycle; % T \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (5,2) -- (5,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (0,-2) -- (0,-0.5) -- (5,-0.5) -- (5,-2) -- cycle; % reach \draw[thick,fill=red, fill opacity=0.3] (2,-2) -- (2,-0.5) -- (3,-0.5) -- (3,-2) -- cycle; % reach \draw[thick,fill=purple, fill opacity=0.3] (3,-2) -- (3,-1) -- (8,-1) -- (8,-2) -- cycle; % reach \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3) {$G$}; \node[shape=circle,draw opacity=0](txt) at (1,1.7) {$T$}; \node[shape=circle,draw opacity=0](txt) at (6.5,0) {$C_0\cup C_1$}; \node[shape=circle,draw opacity=0](txt) at (1,-1.7) {$T_1$}; \node[shape=circle,draw opacity=0](txt) at (2.5,-1.7) {$D$}; \node[shape=circle,draw opacity=0](txt) at (5,-1.7) {$\Reach(T_1\cup D,0)$}; \node[shape=circle,draw opacity=0](txt) at (4,-0.75) {$E$}; \end{tikzpicture} \end{adjustbox} \column{.4\textwidth} % Right column and width $S=\{E\cup C_0\cup C_1\}\backslash \Reach(T_1\cup D,0)$ is the same as $V\backslash \{T\cup \Reach(T)\}$ in Algorithm 1.\\~ Then we can compute $\Reach(S,1)$ to delete some losing vertices for P0 in $T$.\\~ Repeat the same process on $G\backslash\{T\backslash \Reach(S,1)\}$ \end{columns} \end{frame} \begin{frame}{Algorithm for Büchi Game 2} \begin{itemize} \item Time complexity\\~ Finding $S$ needs $O(m)$ time.\\ Also in the worst case we need to compute $S$ $O(n)$ times. worst case $O(nm)$. \end{itemize} \end{frame} %------------------------------------------------