Minimizing the Sum of Piecewise Linear Convex Functions

丛宇

March 15, 2025

<u>Plan</u>

1. Problems & Definitions

2. Properties

3. LP in Low Dimensions

4. Possible Improvements

$\min \sum f_i(a_i \cdot x - b_i)$

Problem 1. Given n piecewise linear convex functions $f_1,...,f_n: \mathbb{R} \to \mathbb{R}$ of total m breakpoints, and n linear functions $a_i \cdot x - b_i : \mathbb{R}^d \to \mathbb{R}$, find $\min_x \sum_i f_i(a_i \cdot x - b_i)$.

(a) A 1D pwl function with 4 line segments and 3 breakpoints

(b) A 2D pwl concave function

 $f_i(a_i \cdot x - b_i) : \mathbb{R}^d \to \mathbb{R}$ is also piecewise linear convex.

4/19

General piecewise linear convex function in \mathbb{R}^d

Definition 2 [piecewise linear convex function in \mathbb{R}^d].

$$g(x) = \max\{a_1^T x + b_1, \dots, a_L^T x + b_L\}$$

Every piecewise linear convex function in \mathbb{R}^d can be expressed in this form. 1

However, observe that in our problem the piecewise linear convex function is not that general. It is a composition of a linear mapping and an 1D piecewise linear convex function.

¹S.P. Boyd, L. Vandenberghe, **Convex optimization**, Cambridge University Press, Cambridge, UK; New York, 2004.

$f \circ I \not\equiv g$

Proof. Consider a piecewise linear convex function $g : \mathbb{R}^2 \to \mathbb{R}$. g can be viewed as the maximum of a set of planes in \mathbb{R}^3 .

Consider a series of points $P = \{p_1, p_2, ..., p_k\}$ on the 2D plane. After applying the linear mapping to P, we will get a sequence of numbers(points in 1D) $P' = \{p'_1, p'_2, ..., p'_k\}$. We assume that P' is non-decreasing. Note that the value of g on P' is always unimodal since g is convex. However, the value of f on P may not be unimodal. Thus the composition of a linear mapping and a pwl convex function in 1D is not equivalent to pwl convex functions in high dimensions.

A linear time algorithm I

Problem 3. Given n piecewise linear convex functions $f_1, ..., f_n : \mathbb{R} \to \mathbb{R}$ of total m breakpoints, and n linear functions $a_i \cdot x - b_i : \mathbb{R}^d \to \mathbb{R}$, find min_x $\sum_i f_i(a_i \cdot x - b_i)$. This can be solve in $O(2^{2^d}(m+n))$ through Megiddo's Low dimension LP algorithm.² Let n_i be the number of line segments in f_i . Note that $\sum_i n_i = m + n$. We can formulate the optimization problem as the following linear program,

A linear time algorithm II

$$\min \sum_{i=1}^{n} f_{i}$$
s.t. $f_{i} \ge \alpha_{j}(a_{i} \cdot x - b_{i}) - \beta_{j} \quad \forall i \in [n], \forall j$

where $\alpha_i x - \beta_i$ is the j'th line segment on f_i . There will be m + n constraints in total.

²Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM, 31(1):114-127, jan 1984.

Megiddo's algorithm I

 $\verb|https://people.inf.ethz.ch/gaertner/subdir/texts/ownwork/chap50-fin.pdf|$

The dimension d (in our problem, the dimension of x) is small while the number of constraints are huge. We need only d linearly independent tight constraints to identify the optimal solution x^* . Thus most of the constraints are useless.

For one constraint, how can we know where does x^* locate with respect to it?

Through inquiries. Let $a \cdot x \leq b$ be the constraint. Define 3 hyperplanes, $a \cdot x = c$ where $c \in \{b, b - \varepsilon, b + \varepsilon\}$. Now solve three d-1 dimension linear programming. The largest of the three objective functions tells us where x^* lies with respect to the hyperplane.

Megiddo's algorithm II

Finding the optimal solution x^* is therefore equivalent to the following problem,

Problem 4 [Multidimensional Search Problem]. that there exists a point x^* which is not known to us, but there is a oracle that can tell the position of x^* relative to any hyperplane in \mathbb{R}^d . Given n hyperplanes, we want to know the position of x^* relative to each of them.

What about 1 dimension search? A fastest way will be using the linear time median algorithm. We can find the median of *n* numbers and call the oracle to compare the median with x^* . Thus with O(n)time median finding and one oracle call, we find the relative position of n/2 elements relative to x^* .

template example - LP in Low Dimensions

Megiddo's algorithm III

If we can do similar things in \mathbb{R}^d , i.e., there is a method which makes A(d) oracle calls and determines at least B(d) fraction of relative positions, then we can apply this method $\log_{\frac{1}{1-B(d)}} n$ times to find all relative positions.

Note that in 1 dimension, A(1) = 1 and B(1) = 1/2 (call oracle to compare x^* and the median). In \mathbb{R}^d , our oracle is the recursive inquiry.

A trivial method will be iterating on all hyperplanes and calling the oracle on each one, since there is no *median* of a set of hyperplanes in \mathbb{R}^d . The complexity recurrence is

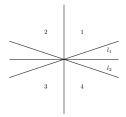
$$T(n, d) = n(3T(n-1, d-1) + O(nd))$$

Note that in this setting A(d) = 1 and B(d) = 1/n.

Megiddo's algorithm IV

Megiddo designed a clever method where $A(d) = 2^{d-1}$ and $B(d) = 2^{-(2^d-1)}$.

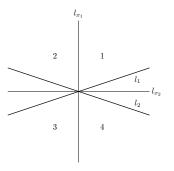
Lemma 5.



Given two lines through the origin with slopes of opposite sign, knowing which quadrant x^* lies in allows us to locate it with respect to at least one of the lines.

Megiddo's algorithm V

Let l_H be the intersection of hyperplane H and x_1x_2 plane. Compute a partition $S_1 \sqcup S_2 = \mathcal{H}$. $H \in S_1$ iff l_H has positive slope. Otherwise $l_H \in S_2$. We further assume that $|S_1| = |S_2| = n/2$.



Now we have n/2 pairs (H_1, H_2) , where $H_i \in S_i$. Let l_i be the intersection of H_i and x_1x_2 plane. Let H_{x_i} be the linear combination of H_1 and H_2 s.t. x_i is eliminated.

By the previous lemma, calling oracle on l_{x_1} and l_{x_2} locate x^* with respect to at least one of H_1 and H_2 .

Megiddo's algorithm VI

Input: S_1 , S_2 and the pairs.

- 1 recursively locate x^* respect to B(d-1)n/2 hyperplanes (H_{x_i}) with A(d-1) oracle calls in S_1 .
- 2 locate with respect to a B(d-1)-fraction of corresponding paired hyperplanes in S_2 .
- There are still $(1 B(d-1)^2)/2$ -fraction of hyperplanes for which we do not know the relative position with x^* . Run this algorithm on these hyperplanes.

This gives the recurrence

$$T(n,d) \le 3 \cdot 2^{d-1} T(n,d-1) + T((1-2^{1-2^d})n,d) + O(nd)$$

with solution $T(n, d) = O(2^{2^d}n)$.

Zemel's conversion

$$\min \sum_{i=1}^{n} f_i$$
s.t. $f_i \ge \alpha_j (a_i \cdot x - b_i) - \beta_j \quad \forall i \in [n], \forall j$

Our linear program has dimension n + d. **Zemel** showed that this kind of problem can be solved in linear time.

This is a *d*-dimensional search problem with n + d hyperplanes.

Other algorithms for fixed dimension LP

```
O(n/d)^{d/2+O(1)}
simplex method
                                                      det.
                                                               2^{O(2^d)}n
Megiddo [24]
                                                      det.
                                                               3^{d^2}n
Clarkson [9]/Dyer [14]
                                                      det.
Dyer and Frieze [15]
                                                               O(d)^{3d}(\log d)^d n
                                                      rand.
                                                               d^2n + O(d)^{d/2 + O(1)} \log n + d^4 \sqrt{n} \log n
Clarkson [10]
                                                      rand.
Seidel [26]
                                                      rand.
                                                               d!n
                                                               \min\{d^22^dn,\ e^{2\sqrt{d\ln(n/\sqrt{d})}+O(\sqrt{d}+\log n)}\}
Kalai [19]/Matoušek, Sharir, and Welzl [23]
                                                      rand.
                                                               d^2n + 2^{O(\sqrt{d\log d})}
combination of [10] and [19, 23]
                                                      rand.
                                                               2^{O(\sqrt{d\log((n-d)/d)})}n
Hansen and Zwick [18]
                                                      rand.
                                                               O(d)^{10d}(\log d)^{2d}n
Agarwal, Sharir, and Toledo [4]
                                                      det.
                                                               O(d)^{7d}(\log d)^d n
Chazelle and Matoušek [8]
                                                      det.
                                                               O(d)^{5d}(\log d)^d n
Brönnimann, Chazelle, and Matoušek [5]
                                                      det.
                                                               O(d)^{d/2}(\log d)^{3d}n
this war (han
                                                      det.
```

Figure: Algorithms for LP in low dimensions ³

Can we use faster fixed dimension LP algorithms to get better complexity?

³table stolen from https://dl.acm.org/doi/10.1145/3155312

LP-type problem I

Algorithms for low dim LP are actually solving a more abstract problem.

Definition 6 [LP-type problem]. Given a set S and a function $f: S \to \mathbb{R}$. f satisfies two properties:

- Monotonicity: $\forall A \subseteq B \subseteq S, f(A) < f(B) < f(S)$.
- Locality: $\forall A \subseteq B \subseteq S$ and $\forall x \in S$, if $f(A) = f(B) = f(A \cup \{x\}), \text{ then } f(A) = f(B \cup \{x\}).$

Linear programs(minimization) are LP-type problems. $B \subseteq S$ is a basis if $\forall B' \subseteq B, f(B') < f(B)$. A set of 'useful' constraints in a linear program is a basis.

The combinatorial dimension is the size of the largest basis. If a LP problem has low dimension, then its combinatorial dimension is low. What about the converse?

LP-type problem II

$$\min \sum_{i=1}^{n} f_{i}$$
s.t. $f_{i} \ge \alpha_{j}(a_{i} \cdot x - b_{i}) - \beta_{j} \quad \forall i \in [n], \forall j$
...

Does our LP has low combinatorial dimension?

No. A basis contains at least n constraints since otherwise some f_i is unbounded.

Problem 7. Is it possible to formulate the pwl convex minimization problem as an LP-type problem with low combinatorial dimension?

Aggregate the pwl convex functions

The sum of pwl convex functions are still pwl convex. If we can compute $F = \sum f_i$ in O(m) and the number of line segments on F is also O(m), then the corresponding LP will have low combinatorial dimension.

min
$$F$$

s.t. $F \ge \alpha_j \cdot x - \beta_j \quad \forall j$
...

However, this is not possible for general pwl convex functions in $\mathbb{R}^{d,4}$

⁴see this blog post for detail.

for $i \in [n]$:

pseudocode

```
for each vertex u \in N(v_i):
  let U[v] = \emptyset for all v.
  for each vertex w \in N(u) that is not v_i:
     add u to U[w].
for all vertex w \in V that is not v_i:
  if |U[w]| \geq \ell:
     output tuple (v_i, w, U[w])
G = G - v_i
```

sort vertices in G in such that $\deg(v_1) \ge \cdots \ge \deg(v_n)$

Figure: An $O(m\alpha(G))$ algorithm for finding all colored $K_{2,\ell'}$ for $\ell' \geq \ell$