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min
∑
fi(ai · x − bi)

Problem 1 Given n piecewise linear convex functions
f1, ..., fn : R → R of total m breakpoints, and n linear functions
ai · x − bi : Rd → R, find minx

∑
i fi(ai · x − bi).

(a) A 1D pwl function with 4 line
segments and 3 breakpoints (b) A 2D pwl concave function

fi(ai · x − bi) : Rd → R is also piecewise linear convex.
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General piecewise linear convex function in Rd

Definition 2 [piecewise linear convex function in Rd]

g(x) = max{aT
1 x + b1, . . . ,aT

Lx + bL}

Every piecewise linear convex function in Rd can be expressed
in this form.1
However, observe that in our problem the piecewise linear
convex function is not that general. It is a composition of a
linear mapping and an 1D piecewise linear convex function.

1S.P. Boyd, L. Vandenberghe, Convex optimization, Cambridge University
Press, Cambridge, UK ; New York, 2004.
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f ◦ l ̸≡ g

Proof: Consider a piecewise linear convex function g : R2 → R. g
can be viewed as the maximum of a set of planes in R3.
Consider a series of points P = {p1,p2, ...,pk} on the 2D plane. After
applying the linear mapping to P, we will get a sequence of
numbers(points in 1D) P′ =

{
p′

1,p′
2, ...,p′

k
}

. We assume that P′ is
non-decreasing. Note that the value of g on P′ is always unimodal
since g is convex. However, the value of f on P may not be
unimodal. Thus the composition of a linear mapping and a pwl
convex function in 1D is not equivalent to pwl convex functions in
high dimensions.
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A linear time algorithm I

Problem 3 Given n piecewise linear convex functions
f1, ..., fn : R → R of total m breakpoints, and n linear functions
ai · x − bi : Rd → R, find minx

∑
i fi(ai · x − bi). This can be

solve in O(22d
(m + n)) through Megiddo’s Low dimension LP

algorithm.2
Let ni be the number of line segments in fi. Note that∑

i ni = m + n.
We can formulate the optimization problem as the following
linear program,
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A linear time algorithm II

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x − bi)− βj ∀i ∈ [n], ∀j

where αjx − βj is the j’th line segment on fi.
There will be m + n constraints in total.

2Nimrod Megiddo. Linear programming in linear time when the
dimension is fixed. J. ACM, 31(1):114–127, jan 1984.
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Megiddo’s algorithm I

https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf

The dimension d (in our problem, the dimension of x) is small
while the number of constraints are huge. We need only d
linearly independent tight constraints to identify the optimal
solution x∗. Thus most of the constraints are useless.
For one constraint, how can we know where does x∗ locate
with respect to it?
Through inquiries. Let a · x ≤ b be the constraint. Define 3
hyperplanes, a · x = c where c ∈ {b,b − ε,b + ε}. Now solve
three d − 1 dimension linear programming. The largest of the
three objective functions tells us where x∗ lies with respect to
the hyperplane.

https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf
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Megiddo’s algorithm II
Finding the optimal solution x∗ is therefore equivalent to the
following problem,
Problem 4 [Multidimensional Search Problem] Suppose
that there exists a point x∗ which is not known to us, but there
is a oracle that can tell the position of x∗ relative to any
hyperplane in Rd. Given n hyperplanes, we want to know the
position of x∗ relative to each of them.
What about 1 dimension search? A fastest way will be using
the linear time median algorithm. We can find the median of n
numbers and call the oracle to compare the median with x∗.
Thus with O(n) time median finding and one oracle call, we
find the relative position of n/2 elements relative to x∗.
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Megiddo’s algorithm III
If we can do similar things in Rd, i.e., there is a method which
makes A(d) oracle calls and determines at least B(d) fraction
of relative positions, then we can apply this method log 1

1−B(d)
n

times to find all relative positions.
Note that in 1 dimension, A(1) = 1 and B(1) = 1/2 (call oracle
to compare x∗ and the median). In Rd, our oracle is the
recursive inquiry.
A trivial method will be iterating on all hyperplanes and
calling the oracle on each one, since there is no median of a
set of hyperplanes in Rd. The complexity recurrence is

T(n,d) = n(3T(n − 1,d − 1) + O(nd))

Note that in this setting A(d) = 1 and B(d) = 1/n.
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Megiddo’s algorithm IV
Megiddo designed a clever method where A(d) = 2d−1 and
B(d) = 2−(2d−1).
Lemma 5

l1

l2

12

3 4

Given two lines through the origin with slopes of opposite
sign, knowing which quadrant x∗ lies in allows us to locate it
with respect to at least one of the lines.
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Megiddo’s algorithm V

Let lH be the intersection of hyperplane H and x1x2 plane.
Compute a partition S1 ⊔ S2 = H. H ∈ S1 iff lH has positive
slope. Otherwise lH ∈ S2. We further assume that
|S1| = |S2| = n/2.

l1

l2

lx2

lx1

12

3 4

Now we have n/2 pairs (H1,H2),
where Hi ∈ Si. Let li be the in-
tersection of Hi and x1x2 plane.
Let Hxi be the linear combina-
tion of H1 and H2 s.t. xi is elimi-
nated.
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Megiddo’s algorithm VI
By the previous lemma, calling oracle on lx1 and lx2 locate x∗
with respect to at least one of H1 and H2.
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Megiddo’s algorithm VII

Input: S1, S2 and the pairs.
1 recursively locate x∗ respect to B(d − 1)n/2

hyperplanes(Hxi) with A(d − 1) oracle calls in S1.
2 locate with respect to a B(d − 1)-fraction of

corresponding paired hyperplanes in S2.
3 There are still (1 − B(d − 1)2)/2-fraction of hyperplanes

for which we do not know the relative position with x∗.
Run this algorithm on these hyperplanes.

This gives the recurrence

T(n,d) ≤ 3 · 2d−1T(n,d − 1) + T((1 − 21−2d
)n,d) + O(nd)

with solution T(n,d) = O(22dn).
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Zemel’s conversion

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x − bi)− βj ∀i ∈ [n], ∀j

Our linear program has dimension n + d. Zemel showed that
this kind of problem can be solved in linear time.

This is a d-dimensional search problem with n + d hyper-
planes.

https://www.sciencedirect.com/science/article/abs/pii/0020019084900140
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Other algorithms for fixed dimension LP

Figure: Algorithms for LP in low dimensions 3

Can we use faster fixed dimension LP algorithms to get better
complexity?

3table stolen from https://dl.acm.org/doi/10.1145/3155312

https://dl.acm.org/doi/10.1145/3155312
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LP-type problem I
Algorithms for low dim LP are actually solving a more abstract
problem.
Definition 6 [LP-type problem] Given a set S and a
function f : S → R. f satisfies two properties:

• Monotonicity: ∀A ⊆ B ⊆ S, f (A) ≤ f (B) ≤ f (S).
• Locality: ∀A ⊆ B ⊆ S and ∀x ∈ S, if

f (A) = f (B) = f (A ∪ {x}), then f (A) = f (B ∪ {x}).

Linear programs(minimization) are LP-type problems.
B ⊆ S is a basis if ∀B′ ⊊ B, f (B′) < f (B). A set of ‘useful’
constraints in a linear program is a basis.
The combinatorial dimension is the size of the largest basis.
If a LP problem has low dimension, then its combinatorial
dimension is low. What about the converse?
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LP-type problem II

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x − bi)− βj ∀i ∈ [n], ∀j
· · ·

Does our LP has low combinatorial dimension?
No. A basis contains at least n constraints since otherwise
some fi is unbounded.
Problem 7 Is it possible to formulate the pwl convex
minimization problem as an LP-type problem with low
combinatorial dimension?
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Aggregate the pwl convex functions

The sum of pwl convex functions are still pwl convex.
If we can compute F =

∑
fi in O(m) and the number of line

segments on F is also O(m), then the corresponding LP will
have low combinatorial dimension.

min F
s.t. F ≥ αj · x − βj ∀j

· · ·

However, this is not possible for general pwl convex functions
in Rd.4

4see this blog post for detail.

https://talldoor.uk/posts/2024-09-16-piecewise-linear.html
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pseudocode

sort vertices in G in such that deg(v1) ≥ · · · ≥ deg(vn)
for i ∈ [n]:

for each vertex u ∈ N(vi):
let U[v] = ∅ for all v.
for each vertex w ∈ N(u) that is not vi:

add u to U[w].
for all vertex w ∈ V that is not vi:

if |U[w]| ≥ ℓ:
output tuple (vi,w,U[w])

G = G − vi

Figure: An O(mα(G)) algorithm for finding all colored K2,ℓ′ for ℓ′ ≥ ℓ
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