Reachability and Büchi games

Yu Cong

September 25, 2024

1. Motivation & References

2. Reachability Game

3. Büchi Game

Motivation: Reachability and Büchi games are important in system verification and testing. Computing the winning set of Büchi games is a central problem in computer aided verification with a large number of applications.

References:

John Smith (2012) Title of the publication Journal Name 12(3), 45 – 678.

Reachability Game

A reachability game is a 2-player (namely P0 and P1) game on a directed finite graph.

Game graph: directed graph $G(\{V_0 \cup V_1\}, E).(\{V_0, V_1\})$ is a partition of V)

Target set: target set is $T \subseteq \{V_0 \cup V_1\}$.

A play P is a (finite or infinite) path in the game graph beginning at the initial vertex s. If $v \in V_0$, P0 moves along an outgoing edge of v. Otherwise, P1 takes the move.

Definition of winning: P0 wins if $T \cap P \neq \emptyset$, otherwise P1 wins.

Memoryless strategy: a strategy for P0 is a mapping $\alpha: V_0 \to V$ that defines how P0 should extend the current play.

Example for Reachability Game

Rectangle vertices are in V_1 , circles are in V_0 ; Vertices in T are red, the initial vertex v_I is blue.

A winning play for P0 is $\{5,3,1\}$

Algorithm for Reachability Game

- if s is in T, P0 wins;
- if $s \in V_0$ and s has at least one outgoing edge to $u \in T$, P0 wins in one step;
- if $s \in V_1$ and all of s's outgoing edges go to $u \in T$, P0 wins in one step;

We defined Rank 0 and Rank 1 already, now we define Rank i. $R_i := \{v \in V | \text{ P0 can force a visit from v to a vertex in } T \text{ in i steps} \}$

Define Reachability set of T for P0, $Reach(T,0) := \bigcup_{i=1}^{n-1} R_i$

A vertex $v \in R_i$: if $v \in V_0$ and there is an edge e(v, u) $u \in R_{i-1}$; if $v \in V_1$ and for every edge e(v, u) we have $u \in \bigcup_{i=0}^{i-1} R_j$;

Algorithm for Reachability Game

• $R_0 = \{1, 2\};$

•
$$R_1 = \{5\};$$

•
$$R_2 = \{3\};$$

•
$$R_3 = \{4\};$$

•
$$R_4 = \{6\};$$

For simplicity, denote $u \in R_k$ by $\mathsf{Rank}[u] = \mathsf{k}$.

8/24

An O(m) Algorithm for Reachability Game

```
Algorithm 1: Reachability for P0
   Data: game graph G, target set T
   Result: Rank[|V|]
   Q := an empty queue:
   Rank[|V|], count[|V|] := all 0s array;
   Q.push(T);
 3
   while Q is not empty do
       u:=Q.front,Q.pop;
 5
       for e(v, u) \in E do
 6
            if v \in V_0 and v has not been visited then
 7
                 Rank[v]:=Rank[u]+1; Q.push(\{v\})
 8
            else if v \in V_1 then
 9
                 count[v]:=count[v]+1;
10
                 if count[v]=Out Degree of v then Rank[v]:=Rank[u]+1;
11
                  Q.push(\{v\});
12
            end
13
       end
14 end
```

Every edge is used at most once.

 $T_1, T_2, ..., T_k$ are disjoint subsets of V, now we want to compute Reachability of each one of them.

Definition A type of vertex x is a tuple (y_1, \ldots, y_k) , where each $x_i \in \{0, 1\}$, such that $y_i = 1$ iff xis in $Reach(T_i, 0)$.

Compute Types

- Run reachability algorithm for every T_i , O(km);
- Compute simultaneously.
- Can it be done in linear or nearly linear time?

Minimum Base

The minimum base of T is the minimum subset of T which can generate the same Reachability set as T.

Computing the minimum base is NP-hard.

Set cover problem: Given a set S of n elements, a collections $S_1, S_2, ..., S_m$ of subsets of S, and a number K, does there exists a collection of at most k of these sets whose union is equal to all of S.

Minimum Base

Proof:

We prove that the decision problem for minimum base is NP-Complete.

The decision problem \boldsymbol{L} is can we find a base with at most ${\bf k}$ vertices.

- 1 L is in NP.
- **2** set cover problem(which is NP-Complete) can be reduced to *L* in polynomial time.
 - Construct a Reachability game graph $G(V_0, E)$. There are m vertices in T representing m subsets in set cover problem, n vertices not in T representing n elements in S.
 - If subset S_i contains element x_j , connect an edge from vertex representing S_i to vertex representing x_j in T.

Minimum Base

So L is NP-Complete. The minimum base problem is NP-Hard.

Büchi Game

Definition A **Büchi game** is a game $\mathcal{G} = (G, s, T)$ where G is the Reachability game graph, V_i is an initial vertex, $T \subseteq V$ is the target set as in Reachability game.

Play: The definition of play in Büchi Game is the same as in Reachability game.

Definition of winning: We assume the play P is infinite here. if there exists infinite many vertices $v \in T$ in P, P0 wins. Otherwise P1 wins.

Example for Büchi Game

P0 is always winning on this game graph.

G

If $v \notin Reach(T, 0) \cup T$, v can not reach T, P0 will lose.

Some vertices in T can not reach $Reach(T,0) \cup T$, P0 will also lose on these vertices.

T_1 l	$Reach(T,0)\backslash Reach(T_2,0)$)
T_2	$Reach(T_2, 0)$	
	G	

 $T_1 = \{ v \in T | v \text{ can't} \\ \text{reach } T \cup Reach(T, 0) \}$

Some vertices in T_2 can only reach $Reach(T, 0) \setminus Reach(T_2, 0)$

We find $T_3 = \{v \in T_2 | v$ can't reach $T_2 \cup Reach(T_2, 0)\}$

T_1 1	$Reach(T,0)\backslash Reach(T_2,0)$)
Winning	set for P0	
	G	

We repeat this process until T_k does not shrink.

The remaining part of $T_k \cup Reach(T_k, 0)$ is the winning set for P0.

- How to find T_1 $T_1 = \{v \in T | v \text{ can't reach } T \cup Reach(T, 0)\}$ $T_1 = \{v \in T | v \text{ can only reach } V \setminus \{T \cup Reach(T, 0)\}\}$ P1 wants to reach $V \setminus \{T \cup Reach(T, 0)\}\}$, P0 tries to avoid $V \setminus \{T \cup Reach(T, 0)\}\}$. compute $Reach(V \setminus \{T \cup Reach(T, 0)\}\}$, 1)
- Time complexity O(m) to find T_i , at most O(n) times. Worst-case O(nm).

Compute C_0 and C_1 .

 C_0 is a set of vertices in $V_0 \setminus T$ having all outgoing edges to vertices in $V \setminus T$. C_1 is a set of vertices in $V_1 \setminus T$ having an outgoing edge to vertices in $V \setminus T$.

Compute $Reach(C_0 \cup C_1, 1)$

Some vertices in $Reach(C_0 \cup C_1, 1)$ can "reach" $T_1.(D$ in the left picture)

Compute $Reach(T_1 \cup D, 0).$

E =

 $Reach(C_0 \cup C_1, 1) \setminus \{T_1 \cup D \cup Reach(T_1 \cup D, 0)\}$

$$\begin{split} \{E \cup C_0 \cup \\ C_1\} \backslash Reach(T_1 \cup D, 0) \text{ is } \\ \text{the set of vertices which} \\ \text{can't "reach" } T. \end{split}$$

$$\begin{split} S &= \{E \cup C_0 \cup \\ C_1\} \backslash Reach(T_1 \cup D, 0) \text{ is } \\ \text{the same as} \\ V \backslash \{T \cup Reach(T)\} \text{ in } \\ \text{Algorithm 1.} \end{split}$$

Then we can compute Reach(S, 1) to delete some losing vertices for P0 in T.

Repeat the same process on $G \setminus \{T \setminus Reach(S, 1)\}$

• Time complexity

Finding S needs O(m) time. Also in the worst case we need to compute S O(n) times. worst case O(nm).