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template example — Problems & Definitions

min Zf,-(a,- c X — b,)

Problem. Given n piecewise linear convex functions
fiyeees fn : R — R of total m breakpoints, and n linear functions
ai-x — b : R - R, find min, 3", fi(a; - x — by).

(a) A 1D pwl function with 4 line
segments and 3 breakpoints (b) A 2D pwl concave function

fi(ai - x — b;) : RY = Ris also piecewise linear convex.
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template example — Problems & Definitions

General piecewise linear convex function in RY

Definition [piecewise linear convex function in RY].

g(x) = max{a]x + by,...,a[x + b}

Every piecewise linear convex function in RY can be expressed in
this form.!

However, observe that in our problem the piecewise linear convex
function is not that general. It is a composition of a linear mapping
and an 1D piecewise linear convex function.

'S.P. Boyd, L. Vandenberghe, Convex optimization, Cambridge University
Press, Cambridge, UK ; New York, 2004.
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template example — Problems & Definitions

fol#£g

Proof. Consider a piecewise linear convex function g : R — R. g can be
viewed as the maximum of a set of planes in R

Consider a series of points P = {p1, ps, ..., px} on the 2D plane. After
applying the linear mapping to P, we will get a sequence of
numbers(points in 1D) P’ = {p}, p}, ..., p\.}. We assume that P’ is
non-decreasing. Note that the value of g on P’ is always unimodal since g
is convex. However, the value of f on P may not be unimodal. Thus the
composition of a linear mapping and a pwl convex function in 1D is not
equivalent to pwl convex functions in high dimensions. O
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W 619
A linear time algorithm |

Problem. Given n piecewise linear convex functions
fis oy fo - R = R of total m breakpoints, and n linear functions
a;-x — b : R? — R, find min, >, fi(a; - x — b;). This can be solve in

0(2%' (m + n)) through Megiddo’s Low dimension LP algorithm 2
Let n; be the number of line segments in f;. Note that )~ nj = m+n.

We can formulate the optimization problem as the following linear
program,
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A linear time algorithm Il

n
min Zf,
i=1

st fi>aj(ai-x —bi) =B Vi€ |[n],Vj

where ajx — f3; is the j’th line segment on f;.
There will be m 4+ n constraints in total.

“Nimrod Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31(1):114-127, jan 1984.
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Megiddo’s algorithm I

https://people.inf.ethz.ch/gaertner/subdir/texts/ownwork/chap50-fin.pdf

The dimension d (in our problem, the dimension of x) is small while
the number of constraints are huge. We need only d linearly
independent tight constraints to identify the optimal solution x*.
Thus most of the constraints are useless.

For one constraint, how can we know where does x* locate
with respect to it?

Through inquiries. Let a- x < b be the constraint. Define 3
hyperplanes, a- x = ¢ where ¢ € {b,b — ¢, b+ £}. Now solve three
d — 1 dimension linear programming. The largest of the three
objective functions tells us where x* lies with respect to the
hyperplane.


https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf
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Megiddo’s algorithm Il

Finding the optimal solution x™* is therefore equivalent to the
following problem,

Problem [Multidimensional Search Problem]. Suppose
that there exists a point x* which is not known to us, but there is a
oracle that can tell the position of x* relative to any hyperplane in R.
Given n hyperplanes, we want to know the position of x* relative to
each of them.

What about 1 dimension search? A fastest way will be using the
linear time median algorithm. We can find the median of n numbers
and call the oracle to compare the median with x*. Thus with O(n)
time median finding and one oracle call, we find the relative
position of n/2 elements relative to x*.
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Megiddo’s algorithm IlI

If we can do similar things in RY i.e., there is a method which
makes A(d) oracle calls and determines at least B(d) fraction of
relative positions, then we can apply this method Iog% n times to
find all relative positions.

Note that in 1 dimension, A(1) = 1 and B(1) = 1/2 (call oracle to
compare x* and the median). In RY, our oracle is the recursive
inquiry.

A trivial method will be iterating on all hyperplanes and calling the
oracle on each one, since there is no median of a set of hyperplanes
in RY. The complexity recurrence is

T(n,d) =n(3T(n—1,d — 1) + O(nd))

Note that in this setting A(d) = 1and B(d) = 1/n.
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Megiddo’s algorithm IV

Megiddo designed a clever method where A(d) = 29~" and
B(d) = 2~ "=,

Lemma.

Given two lines through the origin with slopes of opposite sign,
knowing which quadrant x* lies in allows us to locate it with respect to
at least one of the lines.
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Megiddo’s algorithm V

Let [y be the intersection of hyperplane H and x;x; plane. Compute
a partition S; U S; = H. H € S iff [y has positive slope. Otherwise
ly € S,. We further assume that |S;| = |S,| = n/2.

Now we have n/2 pairs (H;, H),

2 1 where H; € S;. Let [; be the inter-
section of H; and xix; plane. Let

le Hy; be the linear combination of H;
and H, s.t. x; is eliminated.

By the previous lemma, calling oracle on [, and [, locate x* with
respect to at least one of Hy and H,.
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template example —LP in Low Dimensions

Megiddo’s algorithm VI

Input: S, S; and the pairs.

recursively locate x* respect to B(d — 1)n/2 hyperplanes(Hy,)
with A(d — 1) oracle calls in S;.

locate with respect to a B(d — 1)-fraction of corresponding
paired hyperplanes in S,.

There are still (1 — B(d — 1)*)/2-fraction of hyperplanes for
which we do not know the relative position with x*. Run this
algorithm on these hyperplanes.

This gives the recurrence
T(n,d) < 3-297"T(n,d — 1) + T((1 — 2""*)n, d) + O(nd)

with solution T(n, d) = O(22dn).
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template example —LP in Low Dimensions

Zemel’s conversion

min Zf,
i=1
s.it. fi>aj(ai-x—b;)—p; Vi€ [n],Vj

Our linear program has dimension n+ d. Zemel showed that this
kind of problem can be solved in linear time.

This is a d-dimensional search problem with n + d hyperplanes.
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https://www.sciencedirect.com/science/article/abs/pii/0020019084900140
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Other algorithms for fixed dimension LP

simplex method det. [ O(n/d)¥?>+0)
Megiddo [24] det. | 20@%p
Clarkson [9]/Dyer [14] det. |3%n
Dyer and Frieze [15] rand. | O(d)3¢(log d)n
Clarkson [10] rand. | d*n + O(d)¥?*t9W log n + d*\/nlogn
Seidel [26] rand. | dln
Kalai [19]/Matousek, Sharir, and Welzl [23] | rand. | min{d?2%n, 2V dl“("/\/a)+0(\/a+logn)}
combination of [10] and [19, 23] rand. | d?n + 20(Vdlogd)
Hansen and Zwick [18] rand. | 20 dlog((n=d)/d)),,
Agarwal, Sharir, and Toledo [4] det. | O(d)!%(log d)*n
Chazelle and Matousek [8] det. | O(d)™(log d)?n
Brénnimann, Chazelle, and Matousek [5] det. | O(d)*(log d)?n
emimmmer (o det. | O(d)¥?(log d)*n

Figure: Algorithms for LP in low dimensions 3

Can we use faster fixed dimension LP algorithms to get better
complexity?

*table stolen from https://dl.acm.org/doi/10.1145/3155312


https://dl.acm.org/doi/10.1145/3155312
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LP-type problem I

Algorithms for low dim LP are actually solving a more abstract

problem.

Definition [LP-type problem]. Given aset S and a function
f:S— R. f satisfies two properties:

e Monotonicity: VA C B C S, f(A) < f(B) < f(S).
e Locality: YAC BC SandVx € S, if
f(A) = f(B) = f(AU {x}), then f(A) = f(BU {x}).

Linear programs(minimization) are LP-type problems.

B C Sisabasisif VB' C B, f(B') < f(B). A set of ‘useful’
constraints in a linear program is a basis.

The combinatorial dimension is the size of the largest basis.
If a LP problem has low dimension, then its combinatorial
dimension is low. What about the converse?
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LP-type problem Il

n
min Zf,
i=1

s.t. fizozj(ai-x—b,-)—ﬁj Vi e [rl],Vj

Does our LP has low combinatorial dimension?
No. A basis contains at least n constraints since otherwise some f; is

unbounded.

Problem. Is it possible to formulate the pwl convex minimization
problem as an LP-type problem with low combinatorial dimension?
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Aggregate the pwl convex functions

b
"
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The sum of pwl convex functions are still pwl convex.
If we can compute F = >_ f; in O(m) and the number of line

segments on F is also O(m), then the corresponding LP will have
low combinatorial dimension.

min  F
s.t. FZOéj’X—,Bj v

However, this is not possible for general pwl convex functions in R9.4

“see this blog post for detail.


https://talldoor.uk/posts/2024-09-16-piecewise-linear.html
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pseudocode

sort vertices in G in such that deg(v) > - -+ > deg(v,)
for i € [n]:
for each vertex u € N(v;):
let Ulv] = 0 for all v.
for each vertex w € N(u) that is not v;:
add u to U[w].
for all vertex w € V that is not v;:
if |U[w]| > ¢
output tuple (v;, w, U[w])
GC=GCG-— Vi

Figure: An O(ma(G)) algorithm for finding all colored K; ¢ for ¢/ > ¢
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