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min
∑

fi(ai · x − bi)

Problem 1. Given n piecewise linear convex functions
f1, ..., fn : R → R of total m breakpoints, and n linear functions
ai · x − bi : Rd → R, find minx

∑
i fi (ai · x − bi ).

(a) A 1D pwl function with 4 line
segments and 3 breakpoints (b) A 2D pwl concave function

fi (ai · x − bi ) : Rd → R is also piecewise linear convex.
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General piecewise linear convex function in Rd

Definition 2 [piecewise linear convex function in Rd ].

g(x) = max{aT1 x + b1, . . . , a
T
L x + bL}

Every piecewise linear convex function in Rd can be expressed in
this form.1

However, observe that in our problem the piecewise linear convex
function is not that general. It is a composition of a linear
mapping and an 1D piecewise linear convex function.

1S.P. Boyd, L. Vandenberghe, Convex optimization, Cambridge University
Press, Cambridge, UK ; New York, 2004.
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f ◦ l ̸≡ g

Proof.

Consider a piecewise linear convex function g : R2 → R. g can be viewed
as the maximum of a set of planes in R3.
Consider a series of points P = {p1, p2, ..., pk} on the 2D plane. After
applying the linear mapping to P, we will get a sequence of
numbers(points in 1D) P ′ = {p′1, p′2, ..., p′k}. We assume that P ′ is
non-decreasing. Note that the value of g on P ′ is always unimodal since
g is convex. However, the value of f on P may not be unimodal. Thus
the composition of a linear mapping and a pwl convex function in 1D is
not equivalent to pwl convex functions in high dimensions.
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A linear time algorithm I

Problem 3. Given n piecewise linear convex functions
f1, ..., fn : R → R of total m breakpoints, and n linear functions
ai · x − bi : Rd → R, find minx

∑
i fi (ai · x − bi ).

This can be solve in O(22
d
(m + n)) through Megiddo’s Low

dimension LP algorithm.2

Let ni be the number of line segments in fi . Note that∑
i ni = m + n.

We can formulate the optimization problem as the following linear
program,
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A linear time algorithm II

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x − bi )− βj ∀i ∈ [n], ∀j

where αjx − βj is the j ’th line segment on fi .
There will be m + n constraints in total.

2Nimrod Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31(1):114–127, jan 1984.
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Megiddo’s algorithm I

https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf

The dimension d (in our problem, the dimension of x) is small
while the number of constraints are huge. We need only d linearly
independent tight constraints to identify the optimal solution x∗.
Thus most of the constraints are useless.
For one constraint, how can we know where does x∗ locate
with respect to it?
Through inquiries. Let a · x ≤ b be the constraint. Define 3
hyperplanes, a · x = c where c ∈ {b, b − ε, b + ε}. Now solve
three d − 1 dimension linear programming. The largest of the
three objective functions tells us where x∗ lies with respect to the
hyperplane.

https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf
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Megiddo’s algorithm II

Finding the optimal solution x∗ is therefore equivalent to the
following problem,

Problem 4 [Multidimensional Search Problem]. Suppose
that there exists a point x∗ which is not known to us, but there is
a oracle that can tell the position of x∗ relative to any hyperplane
in Rd . Given n hyperplanes, we want to know the position of x∗

relative to each of them.

What about 1 dimension search? A fastest way will be using
the linear time median algorithm. We can find the median of n
numbers and call the oracle to compare the median with x∗. Thus
with O(n) time median finding and one oracle call, we find the
relative position of n/2 elements relative to x∗.
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Megiddo’s algorithm III

If we can do similar things in Rd , i.e., there is a method which
makes A(d) oracle calls and determines at least B(d) fraction of
relative positions, then we can apply this method log 1

1−B(d)
n times

to find all relative positions.
Note that in 1 dimension, A(1) = 1 and B(1) = 1/2 (call oracle to
compare x∗ and the median). In Rd , our oracle is the recursive
inquiry.
A trivial method will be iterating on all hyperplanes and calling the
oracle on each one, since there is no median of a set of
hyperplanes in Rd . The complexity recurrence is

T (n, d) = n(3T (n − 1, d − 1) + O(nd))

Note that in this setting A(d) = 1 and B(d) = 1/n.
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Megiddo’s algorithm IV

Megiddo designed a clever method where A(d) = 2d−1 and

B(d) = 2−(2d−1).

Lemma 5.

l1

l2

12

3 4

Given two lines through the origin with slopes of opposite sign,
knowing which quadrant x∗ lies in allows us to locate it with
respect to at least one of the lines.
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Megiddo’s algorithm V

Let lH be the intersection of hyperplane H and x1x2 plane.
Compute a partition S1 ⊔ S2 = H. H ∈ S1 iff lH has positive slope.
Otherwise lH ∈ S2. We further assume that |S1| = |S2| = n/2.

l1

l2

lx2

lx1

12

3 4

Now we have n/2 pairs (H1,H2),
where Hi ∈ Si . Let li be the inter-
section of Hi and x1x2 plane. Let
Hxi be the linear combination of
H1 and H2 s.t. xi is eliminated.

By the previous lemma, calling oracle on lx1 and lx2 locate x∗ with
respect to at least one of H1 and H2.



template example LP in Low Dimensions 丛宇 13/19

Megiddo’s algorithm VI

Input: S1,S2 and the pairs.

1 recursively locate x∗ respect to B(d − 1)n/2 hyperplanes(Hxi )
with A(d − 1) oracle calls in S1.

2 locate with respect to a B(d − 1)-fraction of corresponding
paired hyperplanes in S2.

3 There are still (1− B(d − 1)2)/2-fraction of hyperplanes for
which we do not know the relative position with x∗. Run this
algorithm on these hyperplanes.

This gives the recurrence

T (n, d) ≤ 3 · 2d−1T (n, d − 1) + T ((1− 21−2d )n, d) + O(nd)

with solution T (n, d) = O(22
d
n).
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Zemel’s conversion

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x − bi )− βj ∀i ∈ [n], ∀j

Our linear program has dimension n + d . Zemel showed that this
kind of problem can be solved in linear time.

This is a d-dimensional search problem with n + d hyperplanes.

https://www.sciencedirect.com/science/article/abs/pii/0020019084900140
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Other algorithms for fixed dimension LP

Figure: Algorithms for LP in low dimensions 3

Can we use faster fixed dimension LP algorithms to get
better complexity?

3table stolen from https://dl.acm.org/doi/10.1145/3155312

https://dl.acm.org/doi/10.1145/3155312
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LP-type problem I

Algorithms for low dim LP are actually solving a more abstract
problem.

Definition 6 [LP-type problem]. Given a set S and a
function f : S → R. f satisfies two properties:

• Monotonicity: ∀A ⊆ B ⊆ S , f (A) ≤ f (B) ≤ f (S).

• Locality: ∀A ⊆ B ⊆ S and ∀x ∈ S , if
f (A) = f (B) = f (A ∪ {x}), then f (A) = f (B ∪ {x}).

Linear programs(minimization) are LP-type problems.
B ⊆ S is a basis if ∀B ′ ⊊ B, f (B ′) < f (B). A set of ‘useful’
constraints in a linear program is a basis.
The combinatorial dimension is the size of the largest basis.
If a LP problem has low dimension, then its combinatorial
dimension is low. What about the converse?
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LP-type problem II

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x − bi )− βj ∀i ∈ [n], ∀j
· · ·

Does our LP has low combinatorial dimension?
No. A basis contains at least n constraints since otherwise some fi
is unbounded.

Problem 7. Is it possible to formulate the pwl convex
minimization problem as an LP-type problem with low
combinatorial dimension?
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Aggregate the pwl convex functions

The sum of pwl convex functions are still pwl convex.
If we can compute F =

∑
fi in O(m) and the number of line

segments on F is also O(m), then the corresponding LP will have
low combinatorial dimension.

min F

s.t. F ≥ αj · x − βj ∀j
· · ·

However, this is not possible for general pwl convex functions in
Rd .4

4see this blog post for detail.

https://talldoor.uk/posts/2024-09-16-piecewise-linear.html
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pseudocode

sort vertices in G in such that deg(v1) ≥ · · · ≥ deg(vn)
for i ∈ [n]:

for each vertex u ∈ N(vi ):
let U[v ] = ∅ for all v .
for each vertex w ∈ N(u) that is not vi :

add u to U[w ].
for all vertex w ∈ V that is not vi :
if |U[w ]| ≥ ℓ:

output tuple (vi ,w ,U[w ])
G = G − vi

Figure: An O(mα(G )) algorithm for finding all colored K2,ℓ′ for ℓ
′ ≥ ℓ
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