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min
∑

fi(ai · x − bi)中文测试

问题. regular 中文 jjjfff Given n piecewise linear convex functions
f1, ..., fn : R → R of total m breakpoints, and n linear functions
ai · x− bi : Rd → R, find minx

∑
i fi(ai · x− bi).

(a) A 1D pwl function with 4 line
segments and 3 breakpoints (b) A 2D pwl concave function

fi(ai · x− bi) : Rd → R is also piecewise linear convex.
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General piecewise linear convex function in Rd

定义 [piecewise linear convex function in Rd].

g(x) = max{aT
1x+ b1, . . . , aT

Lx+ bL}

Every piecewise linear convex function in Rd can be expressed in
this form.1

However, observe that in our problem the piecewise linear convex
function is not that general. It is a composition of a linear mapping
and an 1D piecewise linear convex function.

1S.P. Boyd, L. Vandenberghe, Convex optimization, Cambridge University
Press, Cambridge, UK ; New York, 2004.
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f ◦ l ̸≡ g

Proof. Consider a piecewise linear convex function g : R2 → R. g can be
viewed as the maximum of a set of planes in R3.
Consider a series of points P = {p1, p2, ..., pk} on the 2D plane. After
applying the linear mapping to P, we will get a sequence of
numbers(points in 1D) P′ = {p′1, p′2, ..., p′k}. We assume that P′ is
non-decreasing. Note that the value of g on P′ is always unimodal since g
is convex. However, the value of f on P may not be unimodal. Thus the
composition of a linear mapping and a pwl convex function in 1D is not
equivalent to pwl convex functions in high dimensions.
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A linear time algorithm I

问题. Given n piecewise linear convex functions f1, ..., fn : R → R of
total m breakpoints, and n linear functions ai · x− bi : Rd → R, find
minx

∑
i fi(ai · x− bi). This can be solve in O(22

d
(m+ n)) through

Megiddo’s Low dimension LP algorithm.2

Let ni be the number of line segments in fi. Note that
∑

i ni = m+ n.
We can formulate the optimization problem as the following linear
program,
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A linear time algorithm II

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x− bi)− βj ∀i ∈ [n], ∀j

where αjx− βj is the j’th line segment on fi.
There will be m+ n constraints in total.

2Nimrod Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31(1):114–127, jan 1984.
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Megiddo’s algorithm I

https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf

The dimension d (in our problem, the dimension of x) is small while
the number of constraints are huge. We need only d linearly
independent tight constraints to identify the optimal solution x∗.
Thus most of the constraints are useless.
For one constraint, how can we know where does x∗ locate
with respect to it?
Through inquiries. Let a · x ≤ b be the constraint. Define 3
hyperplanes, a · x = c where c ∈ {b, b− ε, b+ ε}. Now solve three
d− 1 dimension linear programming. The largest of the three
objective functions tells us where x∗ lies with respect to the
hyperplane.

https://people.inf.ethz.ch/gaertner/subdir/texts/own_work/chap50-fin.pdf
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Megiddo’s algorithm II
Finding the optimal solution x∗ is therefore equivalent to the
following problem,

问题 [Multidimensional Search Problem]. Suppose that
there exists a point x∗ which is not known to us, but there is a oracle
that can tell the position of x∗ relative to any hyperplane in Rd. Given
n hyperplanes, we want to know the position of x∗ relative to each of
them.

What about 1 dimension search? A fastest way will be using the
linear time median algorithm. We can find the median of n numbers
and call the oracle to compare the median with x∗. Thus with O(n)
time median finding and one oracle call, we find the relative
position of n/2 elements relative to x∗.



中文测试 LP in Low Dimensions 丛宇 10/19

Megiddo’s algorithm III
If we can do similar things in Rd, i.e., there is a method which
makes A(d) oracle calls and determines at least B(d) fraction of
relative positions, then we can apply this method log 1

1−B(d)
n times

to find all relative positions.
Note that in 1 dimension, A(1) = 1 and B(1) = 1/2 (call oracle to
compare x∗ and the median). In Rd, our oracle is the recursive
inquiry.
A trivial method will be iterating on all hyperplanes and calling the
oracle on each one, since there is no median of a set of hyperplanes
in Rd. The complexity recurrence is

T(n, d) = n(3T(n− 1, d− 1) + O(nd))

Note that in this setting A(d) = 1 and B(d) = 1/n.



中文测试 LP in Low Dimensions 丛宇 11/19

Megiddo’s algorithm IV
Megiddo designed a clever method where A(d) = 2d−1 and
B(d) = 2−(2d−1).

引理.

l1

l2

12

3 4

Given two lines through the origin with slopes of opposite sign,
knowing which quadrant x∗ lies in allows us to locate it with respect to
at least one of the lines.



中文测试 LP in Low Dimensions 丛宇 12/19

Megiddo’s algorithm V
Let lH be the intersection of hyperplane H and x1x2 plane. Compute
a partition S1 ⊔ S2 = H. H ∈ S1 iff lH has positive slope. Otherwise
lH ∈ S2. We further assume that |S1| = |S2| = n/2.

l1

l2

lx2

lx1

12

3 4

Now we have n/2 pairs (H1,H2),
where Hi ∈ Si. Let li be the inter-
section of Hi and x1x2 plane. Let
Hxi be the linear combination ofH1

and H2 s.t. xi is eliminated.

By the previous lemma, calling oracle on lx1 and lx2 locate x∗ with
respect to at least one of H1 and H2.
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Megiddo’s algorithm VI

Input: S1, S2 and the pairs.

1 recursively locate x∗ respect to B(d− 1)n/2 hyperplanes(Hxi )
with A(d− 1) oracle calls in S1.

2 locate with respect to a B(d− 1)-fraction of corresponding
paired hyperplanes in S2.

3 There are still (1− B(d− 1)2)/2-fraction of hyperplanes for
which we do not know the relative position with x∗. Run this
algorithm on these hyperplanes.

This gives the recurrence

T(n, d) ≤ 3 · 2d−1T(n, d− 1) + T((1− 21−2d
)n, d) + O(nd)

with solution T(n, d) = O(22
d
n).
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Zemel’s conversion

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x− bi)− βj ∀i ∈ [n], ∀j

Our linear program has dimension n+ d. Zemel showed that this
kind of problem can be solved in linear time.

This is a d-dimensional search problem with n+ d hyperplanes.

https://www.sciencedirect.com/science/article/abs/pii/0020019084900140
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Other algorithms for fixed dimension LP

图: Algorithms for LP in low dimensions 3

Can we use faster fixed dimension LP algorithms to get better
complexity?

3table stolen from https://dl.acm.org/doi/10.1145/3155312

https://dl.acm.org/doi/10.1145/3155312


中文测试 Possible Improvements 丛宇 16/19

LP-type problem I
Algorithms for low dim LP are actually solving a more abstract
problem.

定义 [LP-type problem]. Given a set S and a function
f : S → R. f satisfies two properties:

• Monotonicity: ∀A ⊆ B ⊆ S, f(A) ≤ f(B) ≤ f(S).

• Locality: ∀A ⊆ B ⊆ S and ∀x ∈ S, if f(A) = f(B) = f(A ∪ {x}),
then f(A) = f(B ∪ {x}).

Linear programs(minimization) are LP-type problems.
B ⊆ S is a basis if ∀B′ ⊊ B, f(B′) < f(B). A set of ‘useful’ constraints
in a linear program is a basis.
The combinatorial dimension is the size of the largest basis.
If a LP problem has low dimension, then its combinatorial
dimension is low. What about the converse?
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LP-type problem II

min
n∑

i=1

fi

s.t. fi ≥ αj(ai · x− bi)− βj ∀i ∈ [n], ∀j
· · ·

Does our LP has low combinatorial dimension?
No. A basis contains at least n constraints since otherwise some fi is
unbounded.

问题. Is it possible to formulate the pwl convex minimization
problem as an LP-type problem with low combinatorial dimension?
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Aggregate the pwl convex functions

The sum of pwl convex functions are still pwl convex.
If we can compute F =

∑
fi in O(m) and the number of line

segments on F is also O(m), then the corresponding LP will have low
combinatorial dimension.

min F

s.t. F ≥ αj · x− βj ∀j
· · ·

However, this is not possible for general pwl convex functions in Rd.4

4see this blog post for detail.

https://talldoor.uk/posts/2024-09-16-piecewise-linear.html
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pseudocode

sort vertices in G in such that deg(v1) ≥ · · · ≥ deg(vn)
for i ∈ [n]:
for each vertex u ∈ N(vi):
let U[v] = ∅ for all v.
for each vertex w ∈ N(u) that is not vi:

add u to U[w].
for all vertex w ∈ V that is not vi:

if |U[w]| ≥ ℓ:
output tuple (vi,w,U[w])

G = G− vi

图: An O(mα(G)) algorithm for finding all colored K2,ℓ′ for ℓ′ ≥ ℓ
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