mirror of
				https://github.com/congyu711/BeamerTheme.git
				synced 2025-11-04 08:01:08 +08:00 
			
		
		
		
	add example Büchi Game
This commit is contained in:
		@@ -1,6 +1,5 @@
 | 
			
		||||
\definecolor{lightblue}{rgb}{0.67,0.87,0.9}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
%------------------------------------------------
 | 
			
		||||
\section{Motivation \& References}
 | 
			
		||||
%------------------------------------------------
 | 
			
		||||
@@ -91,7 +90,7 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
    
 | 
			
		||||
    $R_i:=\{v\in V|$ P0 can force a visit from v to a vertex in $T$ in i steps$\}$\\~
 | 
			
		||||
    
 | 
			
		||||
    Define Reachability set of $T$ for P0, $Reach(T,0) := \bigcup_{i=1}^{n-1}R_i$\\~
 | 
			
		||||
    Define Reachability set of $T$ for P0, $\Reach(T,0) := \bigcup_{i=1}^{n-1}R_i$\\~
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
        A vertex $v\in R_i$: \\~
 | 
			
		||||
@@ -184,7 +183,7 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
    \end{adjustbox}
 | 
			
		||||
 | 
			
		||||
    \column{.5\textwidth} % Right column and width
 | 
			
		||||
        \textbf{Definition} A type of vertex $x$ is a tuple $(y_1, \ldots, y_k)$, where each $x_i \in \{0,1\}$, such that $y_i=1$ iff $x$ is in $Reach (T_i, 0)$.
 | 
			
		||||
        \textbf{Definition} A type of vertex $x$ is a tuple $(y_1, \ldots, y_k)$, where each $x_i \in \{0,1\}$, such that $y_i=1$ iff $x$ is in $\Reach (T_i, 0)$.
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
%frame 11
 | 
			
		||||
@@ -204,8 +203,9 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
    The minimum base of $T$ is the minimum subset of $T$ which can generate the same Reachability set as $T$.\\~
 | 
			
		||||
    
 | 
			
		||||
    Computing the minimum base is NP-hard.\\~
 | 
			
		||||
    
 | 
			
		||||
    Set cover problem: Given a set $S$ of n elements, a collections $S_1,S_2,...,S_m$ of subsets of $S$, and a number K, does there exists a collection of at most k of these sets whose union is equal to all of $S$.
 | 
			
		||||
    \begin{problem}[Set cover]
 | 
			
		||||
        Given a set $S$ of n elements, a collections $S_1,S_2,...,S_m$ of subsets of $S$, and a number K, does there exists a collection of at most k of these sets whose union is equal to all of $S$.
 | 
			
		||||
    \end{problem}
 | 
			
		||||
    
 | 
			
		||||
\end{frame}
 | 
			
		||||
%frame 13
 | 
			
		||||
@@ -250,10 +250,12 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
\section{Büchi Game}
 | 
			
		||||
%frame 14
 | 
			
		||||
\begin{frame}{Büchi Game}
 | 
			
		||||
    \textbf{Definition} A \textbf{Büchi game} is a game $\mathcal{G}=(G,s,T)$ where $G$ is the Reachability game graph, $V_i$ is an initial vertex, $T\subseteq V$ is the target set as in Reachability game.\\~
 | 
			
		||||
    Play: The definition of play in Büchi Game is the same as in Reachability game.\\~
 | 
			
		||||
    Definition of winning: We assume the play $P$ is infinite here.
 | 
			
		||||
        if there exists infinite many vertices $v\in T$ in $P$, P0 wins. Otherwise P1 wins.
 | 
			
		||||
    \begin{definition}[Büchi Game]
 | 
			
		||||
        A \textbf{Büchi game} is a game $\mathcal{G}=(G,s,T)$ where $G$ is the Reachability game graph, $V_i$ is an initial vertex, $T\subseteq V$ is the target set as in Reachability game.\\~
 | 
			
		||||
        Play: The definition of play in Büchi Game is the same as in Reachability game.\\~
 | 
			
		||||
        Definition of winning: We assume the play $P$ is infinite here.
 | 
			
		||||
            if there exists infinite many vertices $v\in T$ in $P$, P0 wins. Otherwise P1 wins.
 | 
			
		||||
    \end{definition}
 | 
			
		||||
 | 
			
		||||
\end{frame}
 | 
			
		||||
%frame 15
 | 
			
		||||
@@ -299,15 +301,15 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        \draw[thick,fill=lightblue, fill opacity=0.3] (2,-2) -- (2,2) -- (6,2) -- (6,-2) -- cycle;  % reach
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3)  {$G$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,-1.7)  {$T$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,1.7)  {$Reach(T,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,1.7)  {$\Reach(T,0)$};
 | 
			
		||||
 | 
			
		||||
    \end{tikzpicture}
 | 
			
		||||
    \end{adjustbox}
 | 
			
		||||
 | 
			
		||||
    \column{.35\textwidth} % Right column and width
 | 
			
		||||
        If $v\notin Reach(T,0)\cup T$, $v$ can not reach $T$, P0 will lose.\\~
 | 
			
		||||
        If $v\notin \Reach(T,0)\cup T$, $v$ can not reach $T$, P0 will lose.\\~
 | 
			
		||||
        
 | 
			
		||||
        Some vertices in $T$ can not reach $Reach(T,0)\cup T$, P0 will also lose on these vertices.
 | 
			
		||||
        Some vertices in $T$ can not reach $\Reach(T,0)\cup T$, P0 will also lose on these vertices.
 | 
			
		||||
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
@@ -323,19 +325,19 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3)  {$G$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,-1.7)  {$T_2$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,1.7)  {$T_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,-1.7)  {$Reach(T_2,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,1.7)  {$Reach(T,0)\backslash Reach(T_2,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,-1.7)  {$\Reach(T_2,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,1.7)  {$\Reach(T,0)\backslash \Reach(T_2,0)$};
 | 
			
		||||
 | 
			
		||||
    \end{tikzpicture}
 | 
			
		||||
    \end{adjustbox}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    \column{.37\textwidth} % Right column and width
 | 
			
		||||
        $T_1=\{v\in T|v$ can't reach $T\cup Reach(T,0)\}$\\~
 | 
			
		||||
        $T_1=\{v\in T|v$ can't reach $T\cup \Reach(T,0)\}$\\~
 | 
			
		||||
        
 | 
			
		||||
        Some vertices in $T_2$ can only reach $Reach(T,0)\backslash Reach(T_2,0)$\\~
 | 
			
		||||
        Some vertices in $T_2$ can only reach $\Reach(T,0)\backslash \Reach(T_2,0)$\\~
 | 
			
		||||
        
 | 
			
		||||
        We find $T_3=\{v\in T_2|v$ can't reach $T_2\cup Reach(T_2,0)\}$
 | 
			
		||||
        We find $T_3=\{v\in T_2|v$ can't reach $T_2\cup \Reach(T_2,0)\}$
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
\begin{frame}{Algorithm for Büchi Game 1}
 | 
			
		||||
@@ -352,7 +354,7 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        \draw[thick,fill=red, fill opacity=0.3] (0,0.125) -- (0,0.25) -- (6,0.25) -- (6,0.125) -- cycle;
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3)  {$G$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,1.7)  {$T_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,1.7)  {$Reach(T,0)\backslash Reach(T_2,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,1.7)  {$\Reach(T,0)\backslash \Reach(T_2,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (2.1,-1.5)  {Winning set for P0};
 | 
			
		||||
 | 
			
		||||
    \end{tikzpicture}
 | 
			
		||||
@@ -361,17 +363,17 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
    \column{.35\textwidth} % Right column and width
 | 
			
		||||
        We repeat this process until $T_k$ does not shrink.\\~
 | 
			
		||||
        
 | 
			
		||||
        The remaining part of $T_k\cup Reach(T_k,0)$ is the winning set for P0.
 | 
			
		||||
        The remaining part of $T_k\cup \Reach(T_k,0)$ is the winning set for P0.
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
\begin{frame}{Algorithm for Büchi Game 1}
 | 
			
		||||
    \begin{itemize}
 | 
			
		||||
        \item How to find $T_1$\\
 | 
			
		||||
        
 | 
			
		||||
        $T_1=\{v\in T|v$ can't reach $T\cup Reach(T,0)\}$\\
 | 
			
		||||
        $T_1=\{v\in T|v$ can only reach $V\backslash \{T\cup Reach(T,0)\}\}$\\
 | 
			
		||||
        P1 wants to reach $V\backslash \{T\cup Reach(T,0)\}\}$, P0 tries to avoid $V\backslash \{T\cup Reach(T,0)\}\}$.\\
 | 
			
		||||
        compute $Reach(V\backslash \{T\cup Reach(T,0)\}\},1)$
 | 
			
		||||
        $T_1=\{v\in T|v$ can't reach $T\cup \Reach(T,0)\}$\\
 | 
			
		||||
        $T_1=\{v\in T|v$ can only reach $V\backslash \{T\cup \Reach(T,0)\}\}$\\
 | 
			
		||||
        P1 wants to reach $V\backslash \{T\cup \Reach(T,0)\}\}$, P0 tries to avoid $V\backslash \{T\cup \Reach(T,0)\}\}$.\\
 | 
			
		||||
        compute $\Reach(V\backslash \{T\cup \Reach(T,0)\}\},1)$
 | 
			
		||||
        
 | 
			
		||||
        \item Time complexity\\
 | 
			
		||||
            $O(m)$ to find $T_i$, at most $O(n)$ times. Worst-case $O(nm)$.
 | 
			
		||||
@@ -390,7 +392,7 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (3.5,-2.3)  {$G$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,1.7)  {$T$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (6.5,0)  {$C_0\cup C_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (2,-1.7)  {$Reach(C_0\cup C_1,1)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (2,-1.7)  {$\Reach(C_0\cup C_1,1)$};
 | 
			
		||||
        
 | 
			
		||||
    \end{tikzpicture}
 | 
			
		||||
    \end{adjustbox}
 | 
			
		||||
@@ -402,7 +404,7 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        $C_0$ is a set of vertices in $V_0\backslash T$ having all outgoing edges to vertices in $V\backslash T$.\\
 | 
			
		||||
        $C_1$ is a set of vertices in $V_1\backslash T$ having an outgoing edge to vertices in $V\backslash T$.\\~
 | 
			
		||||
        
 | 
			
		||||
        Compute $Reach(C_0\cup C_1,1)$
 | 
			
		||||
        Compute $\Reach(C_0\cup C_1,1)$
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
\begin{frame}{Algorithm for Büchi Game 2}
 | 
			
		||||
@@ -421,21 +423,21 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (6.5,0)  {$C_0\cup C_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,-1.7)  {$T_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (2.5,-1.7)  {$D$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (5,-1.7)  {$Reach(T_1\cup D,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (5,-1.7)  {$\Reach(T_1\cup D,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,-0.75)  {$E$};
 | 
			
		||||
 | 
			
		||||
    \end{tikzpicture}
 | 
			
		||||
    \end{adjustbox}
 | 
			
		||||
 | 
			
		||||
    \column{.39\textwidth} % Right column and width
 | 
			
		||||
    Some vertices in $Reach(C_0\cup C_1,1)$ can "reach" $T_1$.($D$ in the left picture)\\~
 | 
			
		||||
    Some vertices in $\Reach(C_0\cup C_1,1)$ can "reach" $T_1$.($D$ in the left picture)\\~
 | 
			
		||||
    
 | 
			
		||||
    Compute $Reach(T_1\cup D,0)$.\\~
 | 
			
		||||
    Compute $\Reach(T_1\cup D,0)$.\\~
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
    $E=Reach(C_0\cup C_1,1)\backslash \{T_1\cup D \cup Reach(T_1\cup D,0)\}$\\~
 | 
			
		||||
    $E=\Reach(C_0\cup C_1,1)\backslash \{T_1\cup D \cup \Reach(T_1\cup D,0)\}$\\~
 | 
			
		||||
    
 | 
			
		||||
    $\{E\cup C_0\cup C_1\}\backslash Reach(T_1\cup D,0)$ is the set of vertices which can't "reach" $T$.
 | 
			
		||||
    $\{E\cup C_0\cup C_1\}\backslash \Reach(T_1\cup D,0)$ is the set of vertices which can't "reach" $T$.
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
\begin{frame}{Algorithm for Büchi Game 2}
 | 
			
		||||
@@ -454,18 +456,18 @@ Vertices in $T$ are red, the initial vertex $v_I$ is blue.\\~
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (6.5,0)  {$C_0\cup C_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (1,-1.7)  {$T_1$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (2.5,-1.7)  {$D$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (5,-1.7)  {$Reach(T_1\cup D,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (5,-1.7)  {$\Reach(T_1\cup D,0)$};
 | 
			
		||||
        \node[shape=circle,draw opacity=0](txt) at (4,-0.75)  {$E$};
 | 
			
		||||
 | 
			
		||||
    \end{tikzpicture}
 | 
			
		||||
    \end{adjustbox}
 | 
			
		||||
 | 
			
		||||
    \column{.4\textwidth} % Right column and width
 | 
			
		||||
    $S=\{E\cup C_0\cup C_1\}\backslash Reach(T_1\cup D,0)$ is the same as $V\backslash \{T\cup Reach(T)\}$ in Algorithm 1.\\~
 | 
			
		||||
    $S=\{E\cup C_0\cup C_1\}\backslash \Reach(T_1\cup D,0)$ is the same as $V\backslash \{T\cup \Reach(T)\}$ in Algorithm 1.\\~
 | 
			
		||||
    
 | 
			
		||||
    Then we can compute $Reach(S,1)$ to delete some losing vertices for P0 in $T$.\\~
 | 
			
		||||
    Then we can compute $\Reach(S,1)$ to delete some losing vertices for P0 in $T$.\\~
 | 
			
		||||
    
 | 
			
		||||
    Repeat the same process on $G\backslash\{T\backslash Reach(S,1)\}$
 | 
			
		||||
    Repeat the same process on $G\backslash\{T\backslash \Reach(S,1)\}$
 | 
			
		||||
    \end{columns}
 | 
			
		||||
\end{frame}
 | 
			
		||||
\begin{frame}{Algorithm for Büchi Game 2}
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							@@ -1,16 +1,4 @@
 | 
			
		||||
\documentclass{beamer}
 | 
			
		||||
\usepackage[english]{babel}
 | 
			
		||||
\usepackage{fancyhdr}        % header footer
 | 
			
		||||
\usepackage{graphicx}        % figure
 | 
			
		||||
\usepackage{booktabs}
 | 
			
		||||
\usepackage{xcolor}
 | 
			
		||||
\usepackage{bookmark}
 | 
			
		||||
\usepackage{hyperref}
 | 
			
		||||
\usepackage{graphicx} % Allows including images
 | 
			
		||||
\usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
 | 
			
		||||
\usepackage{tikz}
 | 
			
		||||
\usepackage[ruled,linesnumbered]{algorithm2e}
 | 
			
		||||
\usepackage{adjustbox}
 | 
			
		||||
 | 
			
		||||
\author{Yu Cong}
 | 
			
		||||
\title{Reachability and Büchi games}
 | 
			
		||||
@@ -23,6 +11,7 @@
 | 
			
		||||
    
 | 
			
		||||
\usetheme{Simple}
 | 
			
		||||
% \useoutertheme{tree}
 | 
			
		||||
\DeclareMathOperator{\Reach}{Reach}
 | 
			
		||||
    
 | 
			
		||||
\begin{document}
 | 
			
		||||
    \begin{frame}[plain]
 | 
			
		||||
@@ -34,5 +23,5 @@
 | 
			
		||||
        % Throughout your presentation, if you choose to use \section{} and \subsection{} commands, these will automatically be printed on this slide as an overview of your presentation
 | 
			
		||||
        \tableofcontents
 | 
			
		||||
    \end{frame}
 | 
			
		||||
    \input{content.tex}
 | 
			
		||||
    \input{Büchi Game-content.tex}
 | 
			
		||||
\end{document}
 | 
			
		||||
@@ -2,6 +2,44 @@
 | 
			
		||||
%
 | 
			
		||||
% This file may be distributed and/or modified
 | 
			
		||||
% under the LaTeX Project Public License
 | 
			
		||||
\RequirePackage[english]{babel}
 | 
			
		||||
\RequirePackage{fancyhdr}        % header footer
 | 
			
		||||
\RequirePackage{xcolor}
 | 
			
		||||
\RequirePackage{bookmark}
 | 
			
		||||
\RequirePackage{hyperref}[colorlinks=true,urlcolor=Blue,citecolor=Green,linkcolor=BrickRed,unicode]
 | 
			
		||||
\RequirePackage{graphicx} % Allows including images
 | 
			
		||||
\RequirePackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
 | 
			
		||||
\RequirePackage{tikz}
 | 
			
		||||
\usetikzlibrary{backgrounds}
 | 
			
		||||
\usetikzlibrary{arrows,shapes}
 | 
			
		||||
\usetikzlibrary{tikzmark} % for \tikzmarknode
 | 
			
		||||
\usetikzlibrary{calc} % for computing the midpoint between two nodes, e.g. at ($(p1.north)!0.5!(p2.north)$) 
 | 
			
		||||
\RequirePackage[ruled,linesnumbered]{algorithm2e}
 | 
			
		||||
\RequirePackage{adjustbox}
 | 
			
		||||
\RequirePackage{subcaption}
 | 
			
		||||
\RequirePackage{amsmath}
 | 
			
		||||
\RequirePackage{amsthm}
 | 
			
		||||
 | 
			
		||||
% a color box
 | 
			
		||||
\RequirePackage[breakable, theorems, skins]{tcolorbox}
 | 
			
		||||
\tcbset{enhanced}
 | 
			
		||||
\DeclareRobustCommand{\mybox}[2][gray!20]{%
 | 
			
		||||
\begin{tcolorbox}[   %% Adjust the following parameters at will.
 | 
			
		||||
        breakable,
 | 
			
		||||
        left=0pt,
 | 
			
		||||
        right=0pt,
 | 
			
		||||
        top=0pt,
 | 
			
		||||
        bottom=0pt,
 | 
			
		||||
        colback=#1,
 | 
			
		||||
        colframe=#1,
 | 
			
		||||
        width=\dimexpr\textwidth\relax, 
 | 
			
		||||
        enlarge left by=0mm,
 | 
			
		||||
        boxsep=5pt,
 | 
			
		||||
        arc=0pt,outer arc=0pt,
 | 
			
		||||
        ]
 | 
			
		||||
        #2
 | 
			
		||||
\end{tcolorbox}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\definecolor{beamer@simple@color}{RGB}{12 72 66} % bluegreen
 | 
			
		||||
@@ -14,6 +52,7 @@
 | 
			
		||||
\DeclareOptionBeamer{named}{\definecolor{beamer@simple@color}{named}{#1}}
 | 
			
		||||
\DeclareOptionBeamer{hsb}{\definecolor{beamer@simple@color}{hsb}{#1}}
 | 
			
		||||
\ProcessOptionsBeamer
 | 
			
		||||
\definecolor{oliver}{rgb}{0.33, 0.42, 0.18} 
 | 
			
		||||
 | 
			
		||||
% footline
 | 
			
		||||
% delete navigation below
 | 
			
		||||
@@ -101,7 +140,7 @@
 | 
			
		||||
\setbeamercolor{alerted text}{fg=beamer@simple@color}
 | 
			
		||||
\setbeamerfont{block title alerted}{series=\mdseries}
 | 
			
		||||
\setbeamerfont{alerted text}{series=\bfseries\boldmath}
 | 
			
		||||
\hypersetup{colorlinks,linkcolor=,urlcolor=beamer@simple@color!80!white}
 | 
			
		||||
\hypersetup{colorlinks,linkcolor=,urlcolor=oliver}
 | 
			
		||||
\usefonttheme[onlymath]{serif}
 | 
			
		||||
\setbeamerfont{frametitle}{series=\bfseries\boldmath}
 | 
			
		||||
\setbeamerfont{block title}{series=\bfseries\boldmath}
 | 
			
		||||
@@ -122,6 +161,110 @@
 | 
			
		||||
\setbeamercolor{block title}{bg=mygrey!25!white}
 | 
			
		||||
\setbeamercolor{block body}{fg=black,bg=mygrey!13!white}
 | 
			
		||||
 | 
			
		||||
% more theorem env
 | 
			
		||||
\newtheorem{observation}{Observation}
 | 
			
		||||
\newtheorem{question}{Question}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% ----------------------------------------------------------------------
 | 
			
		||||
%  Simple math stuff
 | 
			
		||||
% ----------------------------------------------------------------------
 | 
			
		||||
\renewcommand{\subset}{\subseteq}
 | 
			
		||||
% ---- SYMBOLS ----
 | 
			
		||||
\let\e\varepsilon               % a ``real'' epsilon — better yet, just use Unicode ε.
 | 
			
		||||
%
 | 
			
		||||
%  I give up.  These are in the wrong font, but my kludged versions 
 | 
			
		||||
%  LOOK like kludges, especially \Z, \Q, and \C.
 | 
			
		||||
%
 | 
			
		||||
\def\Real{\mathbb{R}}
 | 
			
		||||
\def\Proj{\mathbb{P}}
 | 
			
		||||
\def\Hyper{\mathbb{H}}
 | 
			
		||||
\def\Integer{\mathbb{Z}}
 | 
			
		||||
\def\Natural{\mathbb{N}}
 | 
			
		||||
\def\Complex{\mathbb{C}}
 | 
			
		||||
\def\Rational{\mathbb{Q}}
 | 
			
		||||
 | 
			
		||||
\let\N\Natural
 | 
			
		||||
\let\Q\Rational
 | 
			
		||||
\let\R\Real
 | 
			
		||||
\let\Z\Integer
 | 
			
		||||
\def\Rd{\Real^d}
 | 
			
		||||
\def\RP{\Real\Proj}
 | 
			
		||||
\def\CP{\Complex\Proj}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% ---- OPERATORS (requires amsmath) ----
 | 
			
		||||
\def\aff{\operatorname{aff}}        
 | 
			
		||||
\def\area{\operatorname{area}}
 | 
			
		||||
\def\argmax{\operatornamewithlimits{arg\,max}}
 | 
			
		||||
\def\argmin{\operatornamewithlimits{arg\,min}}
 | 
			
		||||
\def\Aut{\operatorname{Aut}}        % Automorphism group
 | 
			
		||||
\def\card{\operatorname{card}}  % cardinality, deprecated for \abs
 | 
			
		||||
\def\conv{\operatorname{conv}}  
 | 
			
		||||
\def\E{\operatorname{E}}            % Expectation: $\E[X]$ (like \Pr)
 | 
			
		||||
\def\EE{\operatornamewithlimits{E}}
 | 
			
		||||
\def\Hom{\operatorname{Hom}}        % Homomorphism group
 | 
			
		||||
\def\id{\operatorname{id}}      % identity
 | 
			
		||||
\def\im{\operatorname{im}}      % image
 | 
			
		||||
\def\lcm{\operatorname{lcm}}
 | 
			
		||||
\def\lfs{\operatorname{lfs}}        % local feature size
 | 
			
		||||
\def\poly{\operatorname{poly}}
 | 
			
		||||
\def\polylog{\operatorname{polylog}}
 | 
			
		||||
\def\rank{\operatorname{rank}}
 | 
			
		||||
\def\rel{\operatorname{rel\,}}  % relative (interior, boundary, etc.)
 | 
			
		||||
\def\sgn{\operatorname{sgn}}
 | 
			
		||||
\def\vol{\operatorname{vol}}        % volume
 | 
			
		||||
 | 
			
		||||
\def\fp#1{^{\underline{#1}}}        % falling powers: $n\fp{d}$
 | 
			
		||||
\def\rp#1{^{\overline{#1}}}     % rising powers:  $n\rp{d}$
 | 
			
		||||
 | 
			
		||||
\def\setsymdiff{\operatorname{\triangle}}
 | 
			
		||||
% % --- Darts and fences ---
 | 
			
		||||
% % less nice replacements for stmaryrd characters
 | 
			
		||||
% \@ifundefined{shortrightarrow}{\let\shortrightarrow\rightarrow}{}
 | 
			
		||||
% \@ifundefined{shortleftarrow}{\let\shortleftarrow\leftarrow}{}
 | 
			
		||||
% \@ifundefined{shortuparrow}{\let\shortuparrow\uparrow}{}
 | 
			
		||||
% \@ifundefined{shortdownarrow}{\let\shortdownarrow\downarrow}{}
 | 
			
		||||
 | 
			
		||||
\def\arcto{\mathord\shortrightarrow}
 | 
			
		||||
\def\arcfrom{\mathord\shortleftarrow}
 | 
			
		||||
\def\arc#1#2{#1\arcto#2}
 | 
			
		||||
\def\cra#1#2{#1\mathord\shortleftarrow#2}
 | 
			
		||||
\def\fence#1#2{#1\mathord\shortuparrow#2}
 | 
			
		||||
\def\ecnef#1#2{#1\mathord\shortdownarrow#2}
 | 
			
		||||
 | 
			
		||||
% --- Cheap displaystyle operators ---
 | 
			
		||||
\def\Frac#1#2{{\displaystyle\frac{#1}{#2}}}
 | 
			
		||||
\def\Sum{\sum\limits}
 | 
			
		||||
\def\Prod{\prod\limits}
 | 
			
		||||
\def\Union{\bigcup\limits}
 | 
			
		||||
\def\Inter{\bigcap\limits}
 | 
			
		||||
\def\Lor{\bigvee\limits}
 | 
			
		||||
\def\Land{\bigwedge\limits}
 | 
			
		||||
\def\Lim{\lim\limits}
 | 
			
		||||
\def\Max{\max\limits}
 | 
			
		||||
\def\Min{\min\limits}
 | 
			
		||||
 | 
			
		||||
% ---- RELATORS ----
 | 
			
		||||
\def\deq{\stackrel{\scriptscriptstyle\triangle}{=}} % Use := instead.
 | 
			
		||||
\def\into{\DOTSB\hookrightarrow}        % = one-to-one
 | 
			
		||||
\def\onto{\DOTSB\twoheadrightarrow}
 | 
			
		||||
\def\inonto{\DOTSB\lhook\joinrel\twoheadrightarrow}
 | 
			
		||||
\def\from{\leftarrow}
 | 
			
		||||
\def\tofrom{\leftrightarrow}
 | 
			
		||||
\def\mapsfrom{\mathrel{\reflectbox{$\mapsto$}}}
 | 
			
		||||
\def\longmapsfrom{\mathrel{\reflectbox{$\longmapsto$}}}
 | 
			
		||||
 | 
			
		||||
% ---- DELIMITER PAIRS ----
 | 
			
		||||
% --- always self-scaling delmiter pairs ---
 | 
			
		||||
\def\set#1{\left\{ #1 \right\}}
 | 
			
		||||
\def\floor#1{\left\lfloor #1 \right\rfloor}
 | 
			
		||||
\def\ceil#1{\left\lceil #1 \right\rceil}
 | 
			
		||||
\def\seq#1{\left\langle #1 \right\rangle}
 | 
			
		||||
\def\abs#1{\left| #1 \right|}
 | 
			
		||||
\def\norm#1{\left\| #1 \right\|}
 | 
			
		||||
\def\paren#1{\left( #1 \right)}     % need better macro name!
 | 
			
		||||
\def\brack#1{\left[ #1 \right]}     % need better macro name!
 | 
			
		||||
\def\indic#1{\left[ #1 \right]}     % indicator variable; Iverson notation
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user