gap2
This commit is contained in:
parent
b699410e1a
commit
e6b8b5a577
@ -141,7 +141,7 @@
|
||||
\setbeamercolor{alerted text}{fg=beamer@simple@color}
|
||||
\setbeamerfont{block title alerted}{series=\mdseries}
|
||||
\setbeamerfont{alerted text}{series=\bfseries\boldmath}
|
||||
\hypersetup{colorlinks=true,linkcolor=,citecolor=Green,urlcolor=oliver}
|
||||
\hypersetup{colorlinks=true,linkcolor=oliver,citecolor=Green,urlcolor=oliver}
|
||||
% \usefonttheme[onlymath]{serif}
|
||||
\setbeamerfont{frametitle}{series=\bfseries\boldmath}
|
||||
\setbeamerfont{block title}{series=\bfseries\boldmath}
|
||||
|
20
main.tex
20
main.tex
@ -1,5 +1,4 @@
|
||||
\documentclass{beamer}
|
||||
\usepackage{nicefrac}
|
||||
\DeclareMathOperator*{\opt}{OPT}
|
||||
|
||||
\title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction}
|
||||
@ -158,7 +157,7 @@ $\mu_i=\min \frac{w(C\setminus F)-w(C_{i-1}\setminus F_{i-1})}{c(F_{i-1})-c(F)}$
|
||||
|
||||
|
||||
\begin{frame}{Weight Truncation from LP}
|
||||
Consider the dual of linear relaxation of ILP\ref{IP}.
|
||||
Consider the dual of the linear relaxation of IP\ref{IP}.
|
||||
|
||||
\begin{equation}\label{lp:dualcutint}
|
||||
\begin{aligned}
|
||||
@ -173,19 +172,14 @@ Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\su
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Integrality Gap}
|
||||
% \begin{conjecture}
|
||||
% ILP\ref{IP} has an integrality gap of 4.
|
||||
% \end{conjecture}
|
||||
\begin{conjecture}\label{conj:gap2}
|
||||
IP\ref{IP} has an integrality gap of 2.
|
||||
\end{conjecture}
|
||||
|
||||
% Suppose $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ be the fractional mincut with capacity $w_\mu$.
|
||||
Suppose that $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ and $\lambda^{int}$ be the fractional and integral mincut with capacity $w_{\mu^*}$.
|
||||
\newline
|
||||
|
||||
% we have
|
||||
% \begin{align*}
|
||||
% 4\opt(LP) &=4\lambda^{fr}-4b\mu^*\\
|
||||
% &\geq 2\lambda^{int} - 4b\mu^*\\
|
||||
% &\geq w_{\mu^*}(C^*)-b\mu^*,
|
||||
% \end{align*}
|
||||
% which implies Theorem \autoref{thm:2approx}.
|
||||
Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \geq (\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}.
|
||||
\end{frame}
|
||||
\begin{frame}{References}
|
||||
\bibliographystyle{plainnat}
|
||||
|
Loading…
x
Reference in New Issue
Block a user