add image
This commit is contained in:
parent
1a4ff7b837
commit
b526f7b90a
BIN
images/L.png
Normal file
BIN
images/L.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 93 KiB |
10
main.tex
10
main.tex
@ -137,6 +137,13 @@ Thus the optimal solution must be $C=F=\text{mincut with capacity $c$}$.
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Plot $L(\mu)$}
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=0.8\linewidth]{images/L.png}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\begin{frame}{Breakpoints on $L(\mu)$}
|
\begin{frame}{Breakpoints on $L(\mu)$}
|
||||||
We have see that the first line segment is $L(\mu)=(\lambda_c-b)\mu$ where $\lambda_c$ is the value of mincut with capacity $c$.
|
We have see that the first line segment is $L(\mu)=(\lambda_c-b)\mu$ where $\lambda_c$ is the value of mincut with capacity $c$.
|
||||||
|
|
||||||
@ -176,7 +183,8 @@ Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\su
|
|||||||
IP\ref{IP} has an integrality gap of 2.
|
IP\ref{IP} has an integrality gap of 2.
|
||||||
\end{conjecture}
|
\end{conjecture}
|
||||||
|
|
||||||
Suppose that $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ and $\lambda^{int}$ be the fractional and integral mincut with capacity $w_{\mu^*}$.
|
Suppose that $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}.
|
||||||
|
% Let $\lambda^{fr}$ and $\lambda^{int}$ be the fractional and integral mincut with capacity $w_{\mu^*}$.
|
||||||
\newline
|
\newline
|
||||||
|
|
||||||
Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \leq 2(\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}.
|
Conjecture \ref{conj:gap2} implies $w_{\mu^*}(C^*)+b\mu^* \leq 2(\text{value of mincut with $w_{\mu^*}$})$, \newline which is stronger than Theorem \ref{thm:2approx}.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user