This commit is contained in:
Yu Cong 2025-05-05 14:32:52 +08:00
parent 3ecd4aa79c
commit 5ea84de880

View File

@ -87,10 +87,10 @@ The optimal cut $C^*$ for Connectivity Interdiction is a 2-approximation of glob
\begin{frame}{Algorithm} \begin{frame}{Algorithm}
\begin{algo} \begin{algo}
\underline{\textsc{FPTAS for Connectivity Interdiction}}$(G,w,c,b)$\\ \underline{\textsc{FPTAS for Connectivity Interdiction}}$(G,w,c,b)$\\
1. estimate Normalized Mincut\\ 1. estimate Normalized Mincut $\tau$\\
2. enumerate all 2-approximate mincut with weight $w_\tau$\\ 2. \quad enumerate all 2-approximate mincut with weight $w_\tau$\\
3. \quad for each cut $C$ solve a knapsack to compute $F$\\ 3. \quad \quad for each cut $C$ solve a knapsack to compute $F$\\
return $(C,F)$ with smallest objective value. 4. return $(C,F)$ with smallest objective value.
\end{algo} \end{algo}
1 takes $O(\log_{1+\epsilon}(poly(n)))$ time;\newline 1 takes $O(\log_{1+\epsilon}(poly(n)))$ time;\newline