FPTAS section

This commit is contained in:
Yu Cong 2025-05-04 11:19:55 +08:00
parent 4a0dc137a4
commit 3b2b24cd58
4 changed files with 51 additions and 12 deletions

View File

@ -4,7 +4,9 @@
\RequirePackage[sfdefault]{FiraSans}
\RequirePackage{FiraMono}
\renewcommand{\rmfamily}{\sffamily}
\RequirePackage[fakebold]{firamath-otf}
% \RequirePackage[fakebold]{firamath-otf}
\usepackage[mathrm=sym]{unicode-math}
\setmathfont{Fira Math}
\RequirePackage{xeCJK}
\setCJKmainfont{Source Han Sans SC}

BIN
images/knapsack.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

View File

@ -1,4 +1,5 @@
\documentclass{beamer}
\usepackage{nicefrac}
\title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction}
\date{\today}
@ -42,37 +43,77 @@ Now suppose that we want to attack the network. To what extent can we decrease t
\begin{problem}[edge connectivity interdiction]
The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal cost $c:E\to \Z_+$ and a budget $b\in \Z_+$. The goal is to find a interdiction set $F\subset E$ with $c(F)\leq b$ that minimizes the mincut in $G-F$.
\end{problem}
How to solve this problem if\dots
\begin{itemize}
\item the optimal $F$ is given?
\item the optimal $C$ is given?
\end{itemize}
\end{frame}
\begin{frame}{Examples}
\begin{frame}{Example}
\begin{figure}
Examples for containing knapsack and for unweighted easy case.
\includegraphics[width=0.8\textwidth]{images/knapsack.png}
\end{figure}
\end{frame}
\begin{frame}{Prevous Works}
Zenklusen \citep{zenklusen_connectivity_2014} first studied this problem and showed the following results:
\begin{itemize}
\item A PTAS\footnote{polynomial time approximation scheme} for edge connectivity interdiction;
\item A PTAS\footnote{polynomial time approximation scheme. The running time is polynomial in the input size if $\epsilon$ is fixed.} for edge connectivity interdiction;
\item A $\tilde{O}(m^2 n^4)$ algorithm for the unit cost case\footnote{$\tilde{O}$ hides polylog factors}.
\end{itemize}
Later \citep{vygen_fptas_2024} discovered an FPTAS\footnote{fully PTAS} with time complexity $\tilde{O}(m^2 n^4/\epsilon)$.
Later \citep{vygen_fptas_2024} discovered an FPTAS\footnote{Fully PTAS. The running time is polynomial in both the input size and $1/\epsilon$} with time complexity $\tilde{O}(m^2 n^4/\epsilon)$.
\end{frame}
\section{FPTAS}
\begin{frame}{placeholder}
\begin{frame}{Intermediate Problem}
\begin{problem}[Normalized Mincut]
The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal cost $c:E\to \Z_+$ and a budget $b\in \Z_+$. Find an edge set $F\subset E$ with $c(F)\leq b$ and a cut $C$ such that $\frac{w(C-F)}{b+1-c(F)}$ is minimized.
\end{problem}
Let $\tau$ be the optimum of Normalized Mincut. Consider a truncated weight $w_\tau(e)= \min \{w(e),c(e)\tau\}$.
\begin{theorem}
The optimal cut $C^*$ for Connectivity Interdiction is a 2-approximation of global mincut with weights $w_\tau$.
\end{theorem}
\end{frame}
\begin{frame}{Algorithm}
\begin{algo}
\underline{\textsc{FPTAS for Connectivity Interdiction}}$(G,w,c,b)$\\
1. estimate Normalized Mincut\\
2. enumerate all 2-approximate mincut with weight $w_\tau$\\
3. \quad for each cut $C$ solve a knapsack to compute $F$\\
return $(C,F)$ with smallest objective value.
\end{algo}
1 takes $O(\log_{1+\epsilon}(poly(n)))$ time;\newline
2 takes $O(n^4)$;\newline
3 takes $O(m^2/\epsilon)$.
\newline
complexity: $\tilde{O}(m^2n^4/\epsilon)$.
\end{frame}
\section{LP Perspective}
\begin{frame}{placeholder}
\begin{frame}{LP Method}
\citep{vygen_fptas_2024} gives a strong framework but the intuition behind is vague.
\begin{equation}
\begin{aligned}
\min& & \sum_{e} x_e w(e) & & & &\\
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is a cut)}\\
& & \sum_{e} y_e c(e) &\leq b & & & &\text{(budget for $F$)}\\
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
& & y_e,x_e&\in\{0,1\} & &\forall e & &
\end{aligned}
\end{equation}
\end{frame}
\begin{frame}{References}

View File

@ -10,10 +10,8 @@
booktitle = {Integer {Programming} and {Combinatorial} {Optimization}},
publisher = {Springer Nature Switzerland},
author = {Huang, Chien-Chung and Obscura Acosta, Nidia and Yingchareonthawornchai, Sorrachai},
editor = {Vygen, Jens and Byrka, Jarosław},
year = {2024},
doi = {10.1007/978-3-031-59835-7_16},
note = {Series Title: Lecture Notes in Computer Science},
pages = {210--223},
}
@ -27,7 +25,5 @@
journal = {Operations Research Letters},
author = {Zenklusen, Rico},
year = {2014},
note = {Publisher: Elsevier B.V.},
keywords = {Approximation algorithms, Interdiction problems, Multi-objective optimization, Robust optimization},
pages = {450--454},
}