FPTAS section
This commit is contained in:
parent
4a0dc137a4
commit
3b2b24cd58
@ -4,7 +4,9 @@
|
|||||||
\RequirePackage[sfdefault]{FiraSans}
|
\RequirePackage[sfdefault]{FiraSans}
|
||||||
\RequirePackage{FiraMono}
|
\RequirePackage{FiraMono}
|
||||||
\renewcommand{\rmfamily}{\sffamily}
|
\renewcommand{\rmfamily}{\sffamily}
|
||||||
\RequirePackage[fakebold]{firamath-otf}
|
% \RequirePackage[fakebold]{firamath-otf}
|
||||||
|
\usepackage[mathrm=sym]{unicode-math}
|
||||||
|
\setmathfont{Fira Math}
|
||||||
\RequirePackage{xeCJK}
|
\RequirePackage{xeCJK}
|
||||||
\setCJKmainfont{Source Han Sans SC}
|
\setCJKmainfont{Source Han Sans SC}
|
||||||
|
|
||||||
|
BIN
images/knapsack.png
Normal file
BIN
images/knapsack.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 99 KiB |
55
main.tex
55
main.tex
@ -1,4 +1,5 @@
|
|||||||
\documentclass{beamer}
|
\documentclass{beamer}
|
||||||
|
\usepackage{nicefrac}
|
||||||
|
|
||||||
\title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction}
|
\title[Edge Conn Interdiction]{Faster FPTAS for Edge Connectivity Interdiction}
|
||||||
\date{\today}
|
\date{\today}
|
||||||
@ -42,37 +43,77 @@ Now suppose that we want to attack the network. To what extent can we decrease t
|
|||||||
\begin{problem}[edge connectivity interdiction]
|
\begin{problem}[edge connectivity interdiction]
|
||||||
The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal cost $c:E\to \Z_+$ and a budget $b\in \Z_+$. The goal is to find a interdiction set $F\subset E$ with $c(F)\leq b$ that minimizes the mincut in $G-F$.
|
The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal cost $c:E\to \Z_+$ and a budget $b\in \Z_+$. The goal is to find a interdiction set $F\subset E$ with $c(F)\leq b$ that minimizes the mincut in $G-F$.
|
||||||
\end{problem}
|
\end{problem}
|
||||||
|
|
||||||
|
How to solve this problem if\dots
|
||||||
|
\begin{itemize}
|
||||||
|
\item the optimal $F$ is given?
|
||||||
|
\item the optimal $C$ is given?
|
||||||
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\begin{frame}{Examples}
|
\begin{frame}{Example}
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
Examples for containing knapsack and for unweighted easy case.
|
\includegraphics[width=0.8\textwidth]{images/knapsack.png}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Prevous Works}
|
\begin{frame}{Prevous Works}
|
||||||
Zenklusen \citep{zenklusen_connectivity_2014} first studied this problem and showed the following results:
|
Zenklusen \citep{zenklusen_connectivity_2014} first studied this problem and showed the following results:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item A PTAS\footnote{polynomial time approximation scheme} for edge connectivity interdiction;
|
\item A PTAS\footnote{polynomial time approximation scheme. The running time is polynomial in the input size if $\epsilon$ is fixed.} for edge connectivity interdiction;
|
||||||
\item A $\tilde{O}(m^2 n^4)$ algorithm for the unit cost case\footnote{$\tilde{O}$ hides polylog factors}.
|
\item A $\tilde{O}(m^2 n^4)$ algorithm for the unit cost case\footnote{$\tilde{O}$ hides polylog factors}.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
Later \citep{vygen_fptas_2024} discovered an FPTAS\footnote{fully PTAS} with time complexity $\tilde{O}(m^2 n^4/\epsilon)$.
|
Later \citep{vygen_fptas_2024} discovered an FPTAS\footnote{Fully PTAS. The running time is polynomial in both the input size and $1/\epsilon$} with time complexity $\tilde{O}(m^2 n^4/\epsilon)$.
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\section{FPTAS}
|
\section{FPTAS}
|
||||||
|
|
||||||
\begin{frame}{placeholder}
|
\begin{frame}{Intermediate Problem}
|
||||||
|
\begin{problem}[Normalized Mincut]
|
||||||
|
The input is a graph $G=(V,E)$ with edge weights $w:E\to \Z_+$ and edge removal cost $c:E\to \Z_+$ and a budget $b\in \Z_+$. Find an edge set $F\subset E$ with $c(F)\leq b$ and a cut $C$ such that $\frac{w(C-F)}{b+1-c(F)}$ is minimized.
|
||||||
|
\end{problem}
|
||||||
|
|
||||||
|
Let $\tau$ be the optimum of Normalized Mincut. Consider a truncated weight $w_\tau(e)= \min \{w(e),c(e)\tau\}$.
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
The optimal cut $C^*$ for Connectivity Interdiction is a 2-approximation of global mincut with weights $w_\tau$.
|
||||||
|
\end{theorem}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Algorithm}
|
||||||
|
\begin{algo}
|
||||||
|
\underline{\textsc{FPTAS for Connectivity Interdiction}}$(G,w,c,b)$\\
|
||||||
|
1. estimate Normalized Mincut\\
|
||||||
|
2. enumerate all 2-approximate mincut with weight $w_\tau$\\
|
||||||
|
3. \quad for each cut $C$ solve a knapsack to compute $F$\\
|
||||||
|
return $(C,F)$ with smallest objective value.
|
||||||
|
\end{algo}
|
||||||
|
|
||||||
|
1 takes $O(\log_{1+\epsilon}(poly(n)))$ time;\newline
|
||||||
|
2 takes $O(n^4)$;\newline
|
||||||
|
3 takes $O(m^2/\epsilon)$.
|
||||||
|
\newline
|
||||||
|
|
||||||
|
complexity: $\tilde{O}(m^2n^4/\epsilon)$.
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\section{LP Perspective}
|
\section{LP Perspective}
|
||||||
|
|
||||||
\begin{frame}{placeholder}
|
\begin{frame}{LP Method}
|
||||||
|
\citep{vygen_fptas_2024} gives a strong framework but the intuition behind is vague.
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\min& & \sum_{e} x_e w(e) & & & &\\
|
||||||
|
s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is a cut)}\\
|
||||||
|
& & \sum_{e} y_e c(e) &\leq b & & & &\text{(budget for $F$)}\\
|
||||||
|
% & & x_e&\geq y_e & &\forall e\quad(F\subset C)\\
|
||||||
|
& & y_e,x_e&\in\{0,1\} & &\forall e & &
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{References}
|
\begin{frame}{References}
|
||||||
|
4
ref.bib
4
ref.bib
@ -10,10 +10,8 @@
|
|||||||
booktitle = {Integer {Programming} and {Combinatorial} {Optimization}},
|
booktitle = {Integer {Programming} and {Combinatorial} {Optimization}},
|
||||||
publisher = {Springer Nature Switzerland},
|
publisher = {Springer Nature Switzerland},
|
||||||
author = {Huang, Chien-Chung and Obscura Acosta, Nidia and Yingchareonthawornchai, Sorrachai},
|
author = {Huang, Chien-Chung and Obscura Acosta, Nidia and Yingchareonthawornchai, Sorrachai},
|
||||||
editor = {Vygen, Jens and Byrka, Jarosław},
|
|
||||||
year = {2024},
|
year = {2024},
|
||||||
doi = {10.1007/978-3-031-59835-7_16},
|
doi = {10.1007/978-3-031-59835-7_16},
|
||||||
note = {Series Title: Lecture Notes in Computer Science},
|
|
||||||
pages = {210--223},
|
pages = {210--223},
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -27,7 +25,5 @@
|
|||||||
journal = {Operations Research Letters},
|
journal = {Operations Research Letters},
|
||||||
author = {Zenklusen, Rico},
|
author = {Zenklusen, Rico},
|
||||||
year = {2014},
|
year = {2014},
|
||||||
note = {Publisher: Elsevier B.V.},
|
|
||||||
keywords = {Approximation algorithms, Interdiction problems, Multi-objective optimization, Robust optimization},
|
|
||||||
pages = {450--454},
|
pages = {450--454},
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user