From 0d883a033e517aac9a0c6827802fe62ace1818b6 Mon Sep 17 00:00:00 2001 From: Yu Cong Date: Mon, 5 May 2025 22:46:29 +0800 Subject: [PATCH] gap 4 conj doesn't seem correct... fixed some setminus --- main.tex | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/main.tex b/main.tex index 07cc40a..a08c60d 100644 --- a/main.tex +++ b/main.tex @@ -121,7 +121,7 @@ s.t.& & \sum_{e\in T} x_e+y_e&\geq 1 & &\forall T & &\text{($x+y$ is \begin{frame}{Normalized Mincut from LP} One standard trick for dealing LPs with knapsack constraints is to consider its Lagrangian dual. \begin{equation*} -\max_{\mu\geq 0} L(\mu)= \max_{\mu\geq 0} \min \left\{ w(C-F)-\mu(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C +\max_{\mu\geq 0} L(\mu)= \max_{\mu\geq 0} \min \left\{ w(C\setminus F)-\mu(b-c(F)) | \forall \text{cut $C$}\;\forall F\subset C % \land c(F)\leq b \right\} \end{equation*} @@ -130,11 +130,11 @@ One standard trick for dealing LPs with knapsack constraints is to consider its $L(\mu)$ is piecewise linear and concave. \end{lemma} -For fixed $\mu$, how to solve $\min\limits_{C,F} \left\{ w(C-F)-\mu(b-c(F)) +For fixed $\mu$, how to solve $\min\limits_{C,F} \left\{ w(C\setminus F)-\mu(b-c(F)) \right\}$? -For small enough $\mu\geq 0$, $w(C-F)$ term is dominanting. -Thus the optimal solution must be $C=F=\text{mincut with weight $c$}$. +For small enough $\mu\geq 0$, $w(C\setminus F)$ term is dominanting. +Thus the optimal solution must be $C=F=\text{mincut with capacity $c$}$. \end{frame} @@ -144,7 +144,7 @@ We have see that the first line segment is $L(\mu)=(\lambda_c-b)\mu$ where $\lam What is the first breakpoint on $L(\mu)$? \newline -We have $-\mu(b-\lambda_c)\leq w(C- F)-\mu(b-c(F))$ for any cut $C$ and $F\subsetneq C$. Thus the first breakpoint is $\mu=\min \frac{w(C- F)}{\lambda_c-c(F)}$, which is the value of normalized mincut. +We have $-\mu(b-\lambda_c)\leq w(C\setminus F)-\mu(b-c(F))$ for any cut $C$ and $F\subsetneq C$. Thus the first breakpoint is $\mu=\min \frac{w(C\setminus F)}{\lambda_c-c(F)}$, which is the value of normalized mincut. \newline What about other breakpoints? @@ -173,19 +173,19 @@ Again we first assume the $\mu$ is fixed. Then for each pair of constraints $\su \end{frame} \begin{frame}{Integrality Gap} -\begin{conjecture} -ILP\ref{IP} has an integrality gap of 4. -\end{conjecture} +% \begin{conjecture} +% ILP\ref{IP} has an integrality gap of 4. +% \end{conjecture} -Suppose $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ be the fractional mincut with capacity $w_\mu$. +% Suppose $\mu^*$ is the optimal solution to LP\ref{lp:dualcutint}. Let $\lambda^{fr}$ be the fractional mincut with capacity $w_\mu$. -we have -\begin{align*} -4\opt(LP) &=4\lambda^{fr}-4b\mu^*\\ - &\geq 2\lambda^{int} - 4b\mu^*\\ - &\geq w_{\mu^*}(C^*)-b\mu^*, -\end{align*} -which implies Theorem \autoref{thm:2approx}. +% we have +% \begin{align*} +% 4\opt(LP) &=4\lambda^{fr}-4b\mu^*\\ +% &\geq 2\lambda^{int} - 4b\mu^*\\ +% &\geq w_{\mu^*}(C^*)-b\mu^*, +% \end{align*} +% which implies Theorem \autoref{thm:2approx}. \end{frame} \begin{frame}{References} \bibliographystyle{plainnat}